Гравиметрический анализ
В косвенных методах воду определяют по уменьшению массы пробы при обезвоживании нагреванием или путем выдерживания в эксикаторе с энергичным водоотнимающим веществом (Р2О5, концентрированная H2SO4 и др.). Метод дает правильные результаты, если при этом в пробе не происходит никаких других процессов, кроме удаления воды, т. е. проба не содержит других летучих веществ.
Для определения влажнос
ти пробу обычно выдерживают при температуре 105 или 110°С до постоянной массы. Стехиометрическая или кристаллизационная вода при этом удаляется не всегда, а обезвоживание некоторых веществ, например гидроксидов железа, алюминия и др., требует уже значительно более высокой температуры (700—800°С и выше). При определении влажности органических веществ часто используется нагревание в вакууме при температуре ниже 100 °С.
В прямых методах определения воды водяные пары поглощаются осушителем — специальным веществом, энергично поглощающим влагу (СаС12, Mg(C104)2 и др.). Содержание воды определяется по увеличению массы осушителя, конечно, если он не поглощает других веществ, кроме воды.
Определение кремниевой кислоты. Кремниевая кислота или ее соли входят в состав многих горных пород, руд и других объектов. При обработке горных пород или минералов кислотой в осадке остается кремниевая кислота с переменным содержанием воды. Если анализ начинается со сплавления пробы, гидратированная кремниевая кислота образуется при кислотном выщелачивании плава. Большинство элементов при такой обработке образуют растворимые соединения и легко отделяются от осадка фильтрованием. Однако разделение может быть неполным, так как гидратированная кремниевая кислота может частично проходить через фильтр в виде коллоидного раствора. Поэтому перед фильтрованием осадок кремниевой кислоты стремятся полностью дегидратировать выпариванием с хлороводородной кислотой. При прокаливании кремниевая кислота переходит в безводный SiO2, который является гравиметрической формой. По его массе часто рассчитывают результат анализа. Гидратированный диоксид кремния SiO2 • пН2О является отличным адсорбентом, поэтому осадок SiO2 оказывается загрязненным адсорбированными примесями. Истинное содержание диоксида кремния определяют путем обработки прокаленного осадка фтороводород-ной кислотой при нагревании, в результате чего образуется летучий SiF4:
SiO2 +4HF = SiF4 + 2Н2О
Убыль в массе после обработки осадка фтороводородной кислотой равна содержанию SiO2 в пробе.
Определение железа и алюминия. При анализе силикатов, известняков, некоторых руд и других горных пород эти элементы часто определяют гравиметрическим методом в смеси с титаном, марганцем и фосфатом как сумму так называемых полуторных оксидов. Обычно после отделения кремниевой кислоты в кислом растворе проводят осаждение сульфидов (меди и других элементов) и в фильтрате после удаления сероводорода осаждают сумму полуторных оксидов аммиаком в аммиачном буферном растворе. Осадок гидроксидов промывают декантацией и переосаждают, после чего фильтруют, промывают и прокаливают. Прокаленный осадок содержит оксиды Fe2O3, A12O3, TiO2, MnO2. Иногда анализ на этом заканчивается, так как бывает достаточным определить только сумму оксидов и не требуется устанавливать содержание каждого компонента. При необходимости более-детального анализа прокаленный осадок сплавляют с пиросульфатом калия для перевода оксидов в растворимые сульфаты и после растворения плава определяют в растворе отдельные компоненты — железо титриметрическим или гравиметрическим методом, титан и марганец — фотометрическим и фосфор — гравиметрическим (марганец и фосфор анализируются обычно из отдельной навески). Содержание алюминия рассчитывают по разности. Прямое гравиметрическое определение железа в сумме полуторных оксидов основано на восстановлении Fe(III) сероводородом до Fe(II) и осаждении FeS в аммиачной среде в присутствии винной кислоты как маскирующего агента. Осадок FeS растворяют в НС1, окисляют при нагревании азотной кислотой и осаждают гидроксид железа(Ш) аммиаком. Анализ заканчивают взвешиванием прокаленного Fe2O3.
Определение калия и натрия. Гравиметрическое определение щелочных металлов относится к сравнительно сложным анализам главным образом из-за большой растворимости солей этих металлов. Калий и натрий могут быть определены один в присутствии другого, но нередко применяется и косвенный анализ: определяют сумму хлоридов или сульфатов этих металлов, затем содержание одного из них устанавливают экспериментально, а содержание другого рассчитывают по разности. Иногда используют метод определения суммарной массы хлоридов калия и натрия, а затем после обработки H2SO4 — суммарной массы их сульфатов.
Калий в присутствии натрия может быть осажден в виде K2PtCl6 или КСЮ4. В настоящее время соединения платины для этой цели почти не применяют в связи с их большой стоимостью. Растворимость перхлората калия в воде резко уменьшается в присутствии органических жидкостей. На практике часто используют осаждение КСЮ4 в присутствии смеси равных частей к-бутилового спирта и этилацетата. Гравиметрической формой является КСЮ4, высушенный при 350 °С. Натрий в присутствии калия осаждается цинкуранилацетатом как тройной ацетат состава CH3COONa • (CH3COO)2Zn • 3(CH3COO)2UO2, и это же соединение в виде воздушно-сухого осадка является гравиметрической формой.
Определение органических соединений. В гравиметрическом анализе органических соединений используется способность некоторых реагентов вступать во взаимодействие с функциональными группами (карбонильной, азо-, сульфо- и т. д.). Таким образом, становится возможным анализировать целый класс веществ, имеющих данную атомную группу. Например, соединения, содержащие метоксигруппу, определяются по схеме:
ROCH3 + HI = ROH + CH3I CH3I + Ag+ + H2O = Agl + CH3OH + H+
Результат анализа рассчитывается по массе гравиметрической формы Agl.
Осадок тетраиодфениленхинона высушивают и взвешивают.
В последнее время успешно развивается гравиметрический анализ органических соединений.
Общая оценка метода
Наиболее существенным достоинством гравиметрического метода является высокая точность анализа. Обычная погрешность гравиметрического определения составляет 0,1—0,2%. При анализе пробы сложного состава погрешность возрастает до нескольких процентов за счет несовершенства методов разделения и выделения анализируемого компонента. К числу достоинств гравиметрического метода относится также отсутствие каких-либо стандартизации или градуировок по стандартным образцам, необходимых почти в любом другом аналитическом методе. Для расчета результатов гравиметрического анализа требуется знание лишь молярных масс и стехиометрических соотношений.
Селективность гравиметрического анализа невысока в связи с отсутствием соответствующих реагентов на большинство ионов. Одним из наиболее селективных является гравиметрическое определение никеля в виде диметилглиоксима, но такие примеры единичны и гравиметрические методы, как правило, требуют предварительного химического разделения с целью выделения анализируемого компонента.