Катодное осаждение – анодное растворение сплава железо-никель и структурные превращения в электролитах сплавообразования
Концентрационная зависимость динамической вязкости должна соотноситься с изменением энергетических затрат процесса вязкого течения. Расчет свободной энергии активации вязкого течения. Свободная энергия активации вязкого течения AG, связана с энтальпией ДН и энтропией Sn активации вязкого течения. Анализ температурной зависимости кинематической вязкости растворов NiS, NiCl2, FeCl2 в координатах
lg, 1/Т показал наличие двух областей температуры, различающихся энтальпией активации: от 20 до 40 С от 40 до 70 С. Из наклона кривых lg, 1/Т в соответствии с уравнением была рассчитана энтальпия активации вязкого течения изучаемых растворов. ДНП растворов NiSC>4 меняется от 12,0 до 8,3 кДж/моль, NiCl2 – от 12,3 до 8,8 кДж/моль, FeCl2 – от 12,2 до 9,6 кДж/моль. Величины АНП изучаемых растворов соизмеримы, но меньше энтальпии активации вязкого течения воды (АНП воды составляет 16,26 кДж/моль), что свидетельствует об облегченности процесса перехода из одного положения равновесия в другое, следовательно, о разупорядоченности структуры раствора. Наибольшая нестабильность наблюдается в растворах FeCb, чему соответствуют меньшие по сравнению с NiSC>4 и NiCli значения АНЛ при близких концентрациях, что согласуется с результатами измерений вязкости. Преобладание разрушающего действия вводимых ионов и температуры на структуру воды находит отражение в отрицательных значениях энтропии активации вязкого течения (ASn растворов NiS04 составляет – 48,9 + 72,6 Дж/мольК, NiCl2 – 47,3 – 66,0 Дж/мольК, FeCb – 47,0 – 60,0 Дж/мольК). Увеличение концентрации солей приводит к структурированию в растворах и, соответственно, к росту AS.
Для растворов NiCl2 характерно монотонное и незначительное изменение термодинамических характеристик вязкого течения в изучаемом диапазоне концентраций и температур. Это позволяет предположить, что при изменении концентрации NiCk в пределах ±0,25 моль/л в электролите структурные изменения столь малы, что характер массопереноса сохранится неизменным.
Введение в раствор NiCl2 добавки FeCl2 (1,20 моль/л) приводит к возрастанию динамической вязкости (рис. 4), особенно в области концентраций NiCb, для которых возможно образование полиионной структуры. Повышение температуры электролита снижает динамическую вязкость, но не влияет на характер изотерм вязкости, т.е. определяющую роль в структурных превращениях в концентрированных бинарных растворах играют природа и концентрация компонентов электролита. Об этом свидетельствует наличие одного наклона температурной зависимости вязкости в координатах lg v, 1/Т. Элементами новой структуры являются гидратированные катионы и анионы, связанные водородными связями. Наличие в структуре менее стабильных гидратных комплексов железа приводит к снижению энтальпии активации вязкого течения двухкомпонентных растворов по сравнению с АН индивидуальных растворов. При этом сохраняется тенденция к снижению АН при увеличении концентрации NiCl2, которая присуща водному раствору хлорида никеля.
Энтропия активации вязкого течения двухкомпонентных растворов меньше AS хлорида никеля, при этом имеет место ее уменьшение с ростом концентрации раствора, что свидетельствует о его упорядочении. Энергия активации вязкого течения растворов FeCl2 1,20 моль/л + NiCl2 X моль/л значительно превышает A индивидуальных растворов.
Значения коэффициентов диффузии в водных растворах FeCl2 1,20 моль/л + NiCl2 X моль/л уменьшаются с ростом концентрации, что свидетельствует об усилении гидратации, поскольку ионы диффундируют вместе с гидратной оболочкой. При концентрациях, для которых становится возможным формирование новой полиионной структуры (более 3,10 моль/л NiCl2), наблюдается менее значительное изменение D.
Простым, но достаточно адекватным способом математического описа¬ния концентрационной зависимости динамической вязкости является ее представление в виде степенного многочлена. С помощью функций системы MATLAB 6.1 была выполнена полиномиальная аппроксимация экспериментальных данных в области концентраций 0,34 моль/л для растворов NiS04, NiCl2, NiCl2+FeCl2 и 0,15–1,65 моль/л для раствора FeCl2.
Анализ концентрационных зависимостей динамической вязкости был проведен для аппроксимирующих многочленов степени п = 310. В качестве адекватной математической модели принят полином 7-го порядка, обеспечивающий в узловых точках наименьшую среднеквадратичную погрешность аппроксимации.
Глава 4. Электроосаждение сплава железо-никель
Структурные превращения в электролитах, имеющие место при изменении концентрации компонентов и температуры раствора, должны сказываться на кинетике процесса электроосаждения сплава железо-никель. Для изучения данного влияния было проведено осаждение сплава в потенциостатическом режиме на сталь 45 из электролита состава, моль/л: FeCl2 1,20 + NiCl2 X (X = 0,39; 0,77; 1,54; 2,30; 2,70; 3,10; 3,49; 3,86) + НС1 0,056.
Кривые Ig С имеют излом при концентрации NiCl2 2,70 моль/л, что подтверждает высказанное выше предположение о влиянии структурных изменений в растворе на кинетику электродных процессов. Порядки реакции п по ионам никеля, рассчитанные из зависимостей lg С показывают, что увеличение концентрации NiCl2 более 2,70 моль/л способствует росту п (пи соответствует области концентраций NiCl2 от 0,39 до 2,30 моль/л, п2 – от 2,70 до 3,86 моль/л). Поскольку для электролитов, содержащих NiCl2 более 3,10 моль/л, наблюдается некоторое снижение коэффициентов диффузии, объяснить увеличение порядка реакции по ионам Ni2+ только диффузионными ограничениями недостаточно. Образование полиионной структуры в растворе состава FeCl2 1,20 М + NiCl2 X М + НС1 0,056, элементами которой являются гидратированные ионы, вызывает изменение строения границы раздела фаз со стороны электролита и облегчает процесс разряда ионов. Как показали результаты расчета энтальпии активации вязкого течения структура является менее стабильной, чем водный каркас, следовательно, на разрыв связей в ней потребуется меньшая энергия. Смещение потенциала поляризации в область отрицательных значений приводит к уменьшению, что связано с наложением процессов электроосаждения сплава железо-никель и выделения водорода.
Анализ экспериментальных данных в координатах lg 1 пл – Е также показал наличие двух прямолинейных участков, из наклона которых были определены коэффициенты переноса. Коэффициенты переноса зависят от потенциала поляризации и для второго прямолинейного участка кривых lg in – Е имеют меньшую величину, что связано с выделением водорода. Увеличение концентрации NiCl2 более 3,10 моль/л приводит к некоторому снижению а, что подтверждает предположение о влиянии структурных превращений в электролитах на скорость разряда ионов.
Изменение концентрации компонентов электролита и режима электролиза влияет на состав и структуру осадков, что проявляется в их физико-механических и физико-химических свойствах. Микротвердость Н сплавов железо-никель, независимо от состава электролита и материала анода, достигает максимального значения при ik = 10 А/см2. Согласно данным ВИМС, сплав, осажденный в этом режиме, содержит 40% железа и 60% никеля. При данной концентрации компонентов образуются твердые растворы железа в никеле, кристаллизующиеся с ГЦК решеткой. Рост микротвердости железоникелевых покрытий в интервале плотностей тока от 6 до 10 А/дм2 может быть связан с включением в осадок водорода и гидроксидов, ведущим к деформированию и сжатию кристаллов покрытия. Увеличение плотности тока осаждения более 10 А/дм2 приводит к возрастанию наводороженности покрытий, укрупнению блоков кристаллов. В результате возрастают внутренние напряжения в осадке, что ведет к его охрупчиванию и уменьшению микротвердости. Железо, никель и их сплав характеризуются прочными межатомными связями и осаждаются с внутренними напряжениями растяжения. Генерации внутренних напряжений в изучаемых покрытиях способствуют несколько факторов. Одним из них являются структурные дефекты (вакансии, двойники роста, дислокации), образование которых приводит к искажениям кристаллической решетки и смещению атомов от своих стабильных положений. После прекращения электролиза атомы внедренного водорода диффундируют из кристаллической решетки сплава, что приводит к уменьшению объема осадка и появлению внутренних напряжений. Рентгенофазовый анализ сплава позволил обнаружить образование областей, обогащенных атомами никеля, т.е. в сплаве железо-никель проявляется концентрационная неоднородность.