История изучения брожения
У молочнокислых бактерий нет ферментативного аппарата для использования кислорода воздуха. Кислород для них или безразличен, или угнетает развитие.
Молочнокислое брожение может быть описано уравнением:
C6H12O6 - > 2CH3·CHOH·COOH + 21,8Ч104 дж глюкоза - > молочная кислота + энергия, СвН12О6 - > 2CH8-CHOH-COOH+21,8-104 дж.
Процесс образования молочной кислоты чрезвычайно близ
ок к процессу спиртового брожения. Глюкоза также расщепляется до пировиноградной кислоты. Но затем ее декарбоксилирование (отщепление CO2), как при спиртовом брожении, не происходит, так как молочнокислые бактерии лишены соответствующих ферментов. У них активны дегидрогеназы (НАД). Поэтому пировиноградная кислота сама (а не уксусный альдегид, как при спиртовом брожении) принимает водород от восстановленной формы НАД и превращается в молочную кислоту. В процессе молочнокислого брожения бактерии получают энергию, необходимую им для развития в анаэробных условиях, где использование других источников энергии затруднено.
Гетероферментативное молочнокислое брожение - процесс более сложный, чем гомоферментативное: сбраживание углеводов приводит к образованию ряда соединений, накапливающихся в зависимости от условий процесса брожения. Одни бактерии образуют, помимо молочной кислоты, этиловый спирт и углекислоту, другие - уксусную кислоту; некоторые гетероферментативные молочнокислые бактерии могут образовывать различные спирты, глицерин, маннит.
Гетероферментативное молочнокислое брожение вызывают бактерии рода Lactobacterium и рода Streptococcus. Химизм этих брожений изучен не так хорошо, как спиртового или гомоферментативного молочнокислого брожения.
Гетероферментативные бактерии образуют молочную кислоту иным путем. Последняя стадия - восстановление пировиноградной кислоты до молочной - та же самая, что и в случае гомоферментативного брожения. Но сама пировиноградная кислота образуется при ином расщеплении глюкозы - гексозомонофосфатном. Выход энергии гораздо меньше, чем при спиртовом брожении.
Гетероферментативные бактерии сбраживают ограниченное число веществ: некоторые гексозы (причем определенного строения), пентозы, сахароспирты и кислоты.
Молочнокислое брожение широко используется при выработке молочных продуктов: простокваши, ацидофилина, творога, сметаны. При производстве кефира, кумыса наряду с молочнокислым брожением, вызываемым бактериями, имеет место и спиртовое брожение, вызываемое дрожжами. Молочнокислое брожение происходит на первом этапе изготовления сыра,’ затем молочнокислые бактерии сменяются пропионовокислыми.
Молочнокислые бактерии нашли широкое применение при консервировании плодов и овощей, в силосовании кормов. Чистое молочнокислое брожение применяется для получения молочной кислоты в промышленных масштабах.
Молочная кислота находит широкое применение в производстве кож, красильном деле, при выработке стиральных порошков, изготовлении пластмасс, в фармацевтической промышленности и во многих других отраслях. Молочная кислота также нужна в кондитерской промышленности и для приготовления безалкогольных напитков.
Маслянокислое брожение. Превращение углеводов с образованием масляной кислоты было известно давно. Природа маслянокислого брожения как результат жизнедеятельности микроорганизмов была установлена Луи Пастером в 60-х годах прошлого века.
Возбудителями брожения являются маслянокислые бактерии, получающие энергию для жизнедеятельности путем сбраживания углеводов. Они могут сбраживать разнообразные вещества - углеводы, спирты и кислоты, способны разлагать и сбраживать даже высокомолекулярные углеводы - крахмал, гликоген, декстрины.
Маслянокислое брожение в общем виде описывается уравнением:
C6H12O6 - > CH3·CH2·COOH + 2CO2 + 2H2 глюкоза - > масляная кислота
СвН12О6 - > 2CH8-CHOH-COOH+21,8-104 дж
При этом брожении накапливаются различные побочные продукты. Наряду с масляной кислотой, углекислым газом и водородом образуются этиловый спирт, молочная и уксусная кислоты.
Некоторые маслянокислые бактерии, кроме того, образуют ацетон, бутанол и изопропиловый спирт.
Брожение начинается с процесса фосфорилирования глюкозы и далее идет по гликолитическому пути до стадии образования пировиноградной кислоты. Затем образуется уксусная кислота, которая активируется ферментом. После чего при конденсации (соединении) из двууглеродного соединения получается четырехуглеродная масляная кислота. Таким образом, при маслянокислом брожении происходит не только разложение веществ, но и синтез.
По данным В.Н. Шапошникова, в маслянокислом брожении различаются две фазы. В первой параллельно с увеличением биомассы накапливается уксусная кислота, а масляная кислота образуется преимущественно во второй фазе, когда синтез веществ тела замедляется.
Маслянокислое брожение происходит в природных условиях в гигантских масштабах: на дне болот, в заболоченных почвах, илах и всех тех местах, куда ограничен доступ кислорода. Благодаря деятельности маслянокислых бактерий разлагаются огромные количества органического вещества.
Спиртовое, гомоферментативное молочнокислое и маслянокислое брожения являются основными типами брожений. Все другие виды брожений представляют собой комбинацию этих трех типов. Так, например, пропионовокислое брожение, играющее важную роль при производстве сыров и сопровождающееся накоплением пропионовой и уксусной кислот и углекислого газа, может рассматриваться как комбинация гомоферментативного молочнокислого и спиртового брожений. Брожения клетчатки и пектиновых веществ являются разновидностями маслянокислого брожения.
Итак, три основных типа брожения органически связаны между собой - начальные пути разложения углеводов у них одинаковы.
Процессы дыхания и брожения являются основными источниками энергии, необходимой микроорганизмам для нормальной жизнедеятельности, осуществления процессов синтеза важнейших органических соединений.
Основная польза от брожения - это превращение, например, сока в вино, зерна в пиво, а углеводов в двуокись углерода при брожении хлебного теста.
По Штейнкраузу (Steinkraus; 1995), брожение пищи выполняет пять главных задач:
Обогащение видов пищи разнообразием вкусов, ароматов и текстуры
Сохранение существенного количества пищи с помощью молочной кислоты, алкоголя, уксусной кислоты и щелочного брожения
Биологическое обогащение пищи протеинами, важными аминокислотами, важными жирными кислотами и витаминами
Детоксификация в процессе брожения пищи
Уменьшение времени и затрат на приготовление пищи.
У брожения есть несколько преимуществ, исключительных для пищи. В процессе брожения можно получать важные питательные вещества или устранять непитательные. С помощью брожения пищу можно дольше сохранять, поскольку брожение использует энергию пищи и может создать условия, неподходящие для нежелательных микроорганизмов. Например, при мариновании кислота, получаемая из доминирующей бактерии, препятствует росту всех других микроорганизмов.
Другие рефераты на тему «Химия»:
- Свойства кальция
- Гетероциклы с конденсированной системой ядер. Нуклеозиды и их производные
- Исследование механизма синергического действия смесей цинковых солей органических кислот и полиолов при термическом распаде поливинилхлорида (ПВХ)
- Соответствие между молекулами и группами симметрии
- Разработка методов биотехнологического получения белков, аминокислот и нуклеозидов, меченных дейтерием и изотопом углерода 13С с высокими степенями изотопного обогащения