Природа, источники, механизм взаимодействия с веществом, особенности воздействия на организм человека гамма-излучений
Содержание
1.Введение
2. Природа, источники, механизм взаимодействия с веществом, особенности воздействия на организм человека гамма-излучений
2.1 Радиоактивность
2.2 Гамма-распад
2.3 Контроль γ-излучения на АЭС и в окружающей среде
2.4 Материалы для защиты от гамма-излучения
2.5 Индивидуальная аварийная дозиметрия гамма-излучения
2.6 Особенности воздейств
ия на организм человека гамма-излучений
Заключение
Литература
1.Введение
Урановая руда добывалась в месторождениях между Чехословакией и Германией с 1500 года и использовалась для получения оранжевого цвета при производстве посуды, причем уран использовался для этих целей буквально до последнего времени. Блестящая оранжевая посуда и предметы сервизов, изготовленные несколько десятков лет тому назад, при измерении счетчиком Гейгера "светят" десятки мР/час. В 1896 году Анри Беккерель открыл, что эта руда может засвечивать фотопластинки в темном помещении. Работая в Париже с несколькими тоннами этой руды Мария и Пьер Кюри установили, что излучение испускают не только соли урана, но и соли тория. Явление самопроизвольного излучения было названо радиоактивностью, а элементы, испускающие это излучение, — радиоактивными. При попытке получить уран в чистом виде ученые открыли два новых элемента — полоний и радий, при этом был сделан важный вывод, что радиоактивность — свойство атомов радиоактивного элемента. Эрнест Резерфорд, изучая природу радиоактивного излучения радия, открыл, что оно состоит из трех типов различных излучений, которые назвал так:
• альфа — отклоняется в магнитном поле, положительный заряд;
• бета — отклоняется в магнитном поле, отрицательный заряд;
• гамма — магнитное поле не влияет, заряд отсутствует;
гамма (g-излучение) – коротковолновое электромагнитное излучение с длиной волны < 0,1 нм, возникающее при распаде радиоактивных ядер, переходе ядер из возбужденного состояния в основное, взаимодействии быстрых заряженных частиц с веществом (тормозное излучение), аннигиляции электронно-позитронных пар и т.п.;
2. Природа, источники, механизм взаимодействия с веществом, особенности воздействия на организм человека гамма-излучений
2.1 Радиоактивность
Радиоактивность – способность радионуклидов спонтанно превращаться в атомы других элементов, вследствие перехода ядра с одного энергетического состояния в другое, что сопровождается ионизирующим излучением. В нормальном состоянии соотношение между количеством нейтронов и протонов в ядре строго определенное. Расстояние между ними, их энергия связи – минимальные, ядро устойчивое. В результате облучения нейтронами (или другими частицами), ядро переходит в возбужденное состояние. Через тот или иной промежуток времени оно переходит в устойчивое состояние, а избыточная энергия превращается в радиоактивное излучение ядра. Процесс перехода ядер из неустойчивого в устойчивое состояние с излучением избыточной энергии называется радиоактивным распадом. Основными видами радиоактивных излучений при распаде ядер являются:
· гамма – излучение;
· бета – излучение;
· альфа – излучение;
· нейтронное излучение.
Гамма–излучение – электромагнитное излучение с длиной волны < 0,1 нм, возникающее при распаде радиоактивных ядер, переходе ядер из возбужденного состояния в основное, при взаимодействии быстрых заряженных частиц с веществом, аннигиляции электронно-позитронных пар. Для гамма-излучения характерны в основном три вида взаимодействия с веществом:
1. фотоэффект; 2.комптон – эффект;
3.образование электронно-позитронных пар.
КОМПТОН (Compton) Артур Холли (1892-1962) , американский физик. Открыл и объяснил эффект, названный его именем. Обнаружил полное внутреннее отражение рентгеновских лучей. Открыл широтный эффект в космических лучах. Участник создания атомной бомбы. Нобелевская премия (1927). КОМПТОНА ЭФФЕКТ - открытое А. Комптоном (1922) упругое рассеяние электромагнитного излучения малых длин волн (рентгеновского и гамма-излучения) на свободных электронах, сопровождающееся увеличением длины волны. Комптона эффект подтвердил правильность квантовых представлений об электромагнитном излучении как о потоке фотонов и может рассматриваться как упругое столкновение двух "частиц" - фотона и электрона, при котором фотон передает электрону часть своей энергии (и импульса)
2.2 Гамма-распад
Третий вид радиоактивного распада, открытый первыми исследователями радиоактивности, был распад с испусканием γ-излучения. Большинство атомных ядер, возникающих при α- и β-распадах, образуются в возбужденных состояниях, в которых они пребывают конечное время, определяемое вероятностью распада. Переход ядра из возбужденного состояния в основное состояние или в состояние с меньшей энергией возбуждения может происходить различными способами, в том числе путем испускания электромагнитного γ-излучения. Из этого следует, что γ-излучение — это самопроизвольное коротковолновое электромагнитное излучение, испускаемое возбужденными атомными ядрами. Переходы ядра из возбужденного состояния, сопровождающиеся испусканием γ-лучей, называются радиационными переходами. Радиационный переход может быть однократным, когда ядро, испустив один квант, сразу переходит в основное состояние, или каскадным, когда снятие возбуждения происходит в результате последовательного испускания нескольких γ-квантов. По своей физической природе γ-излучение представляет собой коротковолновое электромагнитное излучение ядерного происхождения. Обычно при радиоактивном распаде ядер, энергия ядерных γ-квантов заключена в пределах примерно от 10 кэВ до 5 МэВ, а при ядерных реакциях рождаются γ-кванты до 20 МэВ. Длина волны этого "жесткого" коротковолнового излучения составляет 10-8 — 10-11 см. Так как в γ-распаде не происходит рождения протона или нейтрона, то, в отличие от α- и β-распадов, каждый из которых является ядерным превращением, при γ-распаде ядерного превращения не происходит. Если обозначить буквой P родительское ядро, то схема γ-распада будет иметь вид:
+ γ +энергия. (1)
Звездочка справа от символа P означает, что исходное ядро находится в возбужденном состоянии.
Пример:
+ γ (0,662 МэВ).
Переходы ядра из возбужденного в основное состояние путем излучения γ-квантов происходят с различной скоростью. Если переход осуществляется примерно за 10-12 сек, то γ-распад считается сопутствующим α- или β-распаду и часто не выделяется в отдельный тип. Если же скорость перехода составляет 10-11сек. и больше, то возбужденное ядро называют метастабильным, и тогда к его массовому числу дописывается буква m, например, Tc99m. Это особый радионуклид, который используется при радиодиагностических медицинских процедурах. Применение этого радионуклида уменьшает дозу, полученную пациентом, т.к. γ-излучение — единственное излучение, испускаемое данным нуклидом. Большинство γ-излучателей испускают параллельно еще и α- и β-частицы. которые приводят к росту дозы облучения пациента.
Другие рефераты на тему «Безопасность жизнедеятельности и охрана труда»:
Поиск рефератов
Последние рефераты раздела
- О средствах защиты органов дыхания от промышленных аэрозолей
- Обзор результатов производственных испытаний средств индивидуальной защиты органов дыхания (СИЗОД)
- О средствах индивидуальной защиты от пыли
- И маски любят счёт
- Правильное использование противогазов в профилактике профзаболеваний
- Снижение вредного воздействия загрязнённого воздуха на рабочих с помощью СИЗ органов дыхания
- О средствах индивидуальной защиты органов дыхания работающих