Особенности строения позвоночных животных. Паук-крестовик
Уровни организации живой материи
Уровни:
Молекулярный. Начальный уровень организации живого. Предмет исследования – молекулы нуклеиновых кислот, белков, углеводов, липидов и других биологических молекул, т.е. молекул, находящихся в клетке. Любая живая система, как бы сложно она ни была организована, состоит из биологических макромолекул: нуклеиновых кислот, белков, полисахаридо
в, а также других важных органических веществ. С этого уровня начинаются разнообразные процессы жизнедеятельности организма: обмен веществ и превращение энергии, передача наследственной информации и др.
1. Клеточный. Изучение клеток, выступающих в роли самостоятельных организмов (бактерии, простейшие и некоторые другие организмы) и клеток, составляющих многоклеточные организмы.
Клетки многоклеточных организмов образуют ткани - системы сходных по строению и функциям клеток и связанных с ними межклеточных веществ. Ткани интегрируются в более крупные функциональные единицы, называемые органами. Внутренние органы характерны для животных; здесь они входят в состав систем органов (дыхательной, нервной и пр.). Например, система органов пищеварения - полость рта, глотка, пищевод, желудок, двенадцатиперстная кишка, тонкая кишка, толстая кишка, заднепроходное отверстие. Подобная специализация, с одной стороны, улучшает работу организма в целом, а с другой - требует повышения степени координации и интеграции различных тканей и органов.
2. Тканевый. Клетки, имеющие общее происхождение и выполняющие сходные функции, образуют ткани. Выделяют несколько типов животных и растительных тканей, обладающих различными свойствами. Тканевый Клетка - структурная и функциональная единица, а также единица развития всех живых организмов, обитающих на Земле. На клеточном уровне сопрягаются передача информации и превращение веществ и энергии.
3. Органный. У организмов, начиная с кишечнополостных, формируются органы (системы органов), часто из тканей различных типов.
4. Организменный.
5. Популяционно-видовой. Организмы одного и того же вида, совместно обитающие в определенных ареалах, составляют популяцию. Сейчас на Земле насчитывают около 500 тыс. видов растений и около 1,5 млн. видов животных.
6. Биогеоценотический Биогеоценоз. Представлен совокупностью организмов разных видов, в той или иной степени зависящих друг от друга.
7. Биосферный. Высшая форма организации живого. Включает все биогеоценозы, связанные общим обменом веществ и превращением энергии.
Каждый из этих уровней довольно специфичен, имеет свои закономерности, свои методы исследования. Даже можно выделить науки, ведущие свои исследования на определенном уровне организации живого. Например, на молекулярном уровне живое изучают такие науки как молекулярная биология, биоорганическая химия, биологическая термодинамика, молекулярная генетика и т.д. Хотя уровни организации живого и выделяются, но они тесно связаны между собой и вытекают один из другого, что говорит о целостности живой природы.
Особенности строения, биологии и экологии Моллюсков, связанные с их образом жизни. Филогенез
В теле любого моллюска действует пищеварительная, кровеносная, выделительная и другие системы органов. Пищеварительная система начинается с ротовой полости, которая переходит в глотку (с теркой), пищевод, желудок с пищеварительной железой, печенью, среднюю и заднюю кишку, открывающуюся наружу анальным отверстием в мантийную полость. У многих видов моллюсков есть слюнные железы.
Кровеносная система моллюсков незамкнутая. Она состоит чаще всего из двухкамерного сердца и отходящих от него кровеносных сосудов. Нервная система образована несколькими парами нервных узлов с нервами. Ненужные для организма продукты обмена поступают из крови моллюсков в почки, а затем в мантийную полость и удаляются наружу. Почек может быть одна, две или четыре.
В глотке малюсков имеется характерный орган – терка (радула), служащий для соскребания пищевых частиц с субстрата.
У многих форм имеется образуемая задней кишкой чернильная железа с чернильным мешком, откуда может выбрасываться темный секрет филогения, историческое развитие организмов. Термин введён нем. эволюционистом Э. Геккелем в 1866. Процесс и его закономерности изучает филогенетика. Основной задачей при изучении филогинеза является реконструкция эволюционных преобразований животных, растений, микроорганизмов, установление на этой основе их происхождения и родственных связей между таксонами, к которым относятся изученные организмы. Для этой цели Э. Геккель разработал метод «тройного параллелизма», позволяющий путём сопоставления данных трёх наук – морфологии, эмбриологии и палеонтологии – восстановить ход исторического развития изучаемой систематической группы. Привлечение данных эмбриологии для реконструкции эволюционных преобразований организмов потребовало изучения соотношения между их индивидуальным и историческим развитием и уточнения понятия филогенез. Английский эволюционист У. Гарстанг в 1922 сформулировал представление о филогенезе. как о последовательности онтогенезов в следующих друг за другом поколениях, связанных соотношением: родители – дети – внуки. Эта идея была развита И. И. Шмальгаузеном, который считал, что филогенез. Представляет собой «исторический ряд известных (отобранных) онтогенезов». Трактовка филогенеза как исторической последовательности онтогенезов, прошедших контроль естественного отбора, позволяет установить процесс развития любой систематической группы. Это зависит от выбора признаков, по которым устанавливается филогенетическая преемственность форм, от наличия данных палеонтологии и от задач исследования. Изучение исторических изменений признаков, характерных для данной систематической группы, позволяет реконструировать филогенез этой группы, однако неравномерность темпов эволюции признаков и неизбежность экстраполяции результатов изучения ограниченного числа признаков на филогенезе целостного организма, а затем на филогенезе таксона, понижает точность реконструкции филогенеза и часто ведёт к ошибкам. Поэтому для целей реконструкции филогенеза всё шире привлекаются данные целого ряда биологических наук, например молекулярной биологии, биохимии, генетики, биогеографии, экологии и др. Эти данные позволяют компенсировать неполноту палеонтологической летописи и уточнить реконструкции филогенеза полученные классическим методом тройного параллелизма. Особое значение приобретает анализ адаптивного значения филогенетических преобразований. Такой подход позволяет резко повысить достоверность филогенетических реконструкций. Изучение филогенеза служит основой построения естественного развития эволюционной теории и более глубокого изучения отдельных таксономических групп; оно важно для исторической геологии и стратиграфии.
материя биосферный моллюск позвоночные паук
Особенности строения позвоночных животных, их классификация. Краткая биологическая характеристика этого подтипа
К подтипу позвоночных относятся следующие классы: рыбы, земноводные, пресмыкающиеся, птицы и млекопитающие. Всех их объединяет наличие челюстного аппарата, активный образ жизни, т.е. активные поиски пищи и полового партнера. При активном передвижении появляются конечности: у рыб - это плавники, а у других представителей - конечности пятипалого типа. В связи с ориентацией появляются органы чувств, головной и спинной мозг и появляются защищающие их череп и позвоночник. У всех позвоночных животных интенсивный обмен веществ, замкнутая кровеносная система, сердце, органы дыхания и органы выделения
Другие рефераты на тему «Биология и естествознание»:
Поиск рефератов
Последние рефераты раздела
- Влияние экологических факторов на разнообразие моллюсков разнотипных искусственных и естественных водоемов
- Влияние экологии водоемов на биологическое разнообразие фауны
- Влияние фтора и фторосодержащих соединений на здоровье населения
- Влияние факторов внешней среды на микроорганизмы
- Влияние физической нагрузки на уровень адренокортикотропного гормона, адреналина, кортизола, кортикостерона в сыворотке крови спортсменов
- Временные аспекты морфогенетических процессов. Эволюция путем гетерохронии
- Вопросы биоэтики