Геохимия титана и свинца
Содержание
1. Титан – Ti
1.1 Общие сведения и история открытия элемента титана
1.2 Минералогия титана
1.3 Геохимия титана
2. Свинец – Pb
2.1 Общие сведения и история открытия элемента свинец
2.2 Минералогия свинца
2.3 Геохимия свинца
Список используемой литературы
1. Титан - Ti
1.1 Общие сведения и история открытия элемента титана
Титан открыт в
конце XVIII в., когда поиски и анализы новых, еще не описанных в литературе минералов увлекали не только химиков и минералогов, но и ученых-любителей. Один из таких любителей, английский священник Грегор, нашел в своем приходе в долине Меначан в Корнуэлле черный песок, смешанный с тонким грязно-белым песком. Грегор растворил пробу песка в соляной кислоте; при этом из песка выделилось 46% железа. Оставшуюся часть пробы Грегор растворил в серной кислоте, причем почти все вещество перешло в раствор, за исключением 3,5% кремнезема. После упаривания сернокислотного раствора остался белый порошок в количестве 46% пробы. Грегор счел его особым видом извести, растворимой в избытке кислоты и осаждаемой едким кали. Продолжая исследования порошка, Грегор пришел к выводу, что он представляет собой соединение железа с каким-то неизвестным металлом. Посоветовавшись с своим другом, минералогом Хавкинсом, Грегор опубликовал в 1791 г. результаты своей работы, предложив назвать новый металл меначином (Menachine) от имени долины, в которой был найден черный песок. В соответствии с этим исходный минерал получил название менаконит. Клапрот познакомился с сообщением Грегора и независимо от него занялся анализом минерала, известного в то время под названием "красного венгерского шерла" (рутил). Вскоре ему удалось выделить из минерала окисел неизвестного металла, который он назвал титаном (Titan) по аналогии с титанами - древними мифическими обитателями земли. Клапрот намеренно избрал мифологическое название в противовес названиям элементов по их свойствам, как было предложено Лавуазье и Номенклатурной комиссией Парижской академии наук и что приводило к серьезным недоразумениям. Подозревая, что меначин Грегора и титан - один и тот же элемент, Клапрот произвел сравнительный анализ менаконита и рутила и установил идентичность обоих элементов. В России в конце XIX в. титан выделил из ильменита и подробно изучил с химической стороны Т.Е. Ловиц; при этом он отметил некоторые ошибки в определениях Клапрота. Электролитически чистый титан был получен в 1895 г. Муассаном. В русской литературе начала XIХ в. титан иногда называется титаний (Двигубский, 1824), там же через пять лет фигурирует название титан.
В периодической системе элементов титан входит в 4 группу металлов (циркон, гафний, ванадий , скандий, ниобий, тантал) с близкими по размерам атомными радиусами. В химических соединениях он проявляет валентность 2, 3, 4. Атомная масса титана 47,9, радиус иона Ti +4 0, 064 нм.
Титан существует в двух состояниях: аморфный — темно-серый порошок, плотность 3,392—3,395г/см3, и кристаллический, плотность 4,5 г/см3. Для кристаллического титана известны две модификации с точкой перехода при 885° (ниже 885° устойчивая гексагональная форма, выше — кубическая); t°пл. ок. 1680°; t кип. выше 3000°. Титан активно поглощает газы (водород, кислород, азот), которые делают его очень хрупким. Технический металл поддаётся горячей обработке давлением. Совершенно чистый металл может быть прокатан на холоду. На воздухе при обыкновенной температуре титан не изменяется, при накаливании образует смесь окиси Ti2O3 и нитрида TiN. В токе кислорода при красном калении окисляется до двуокиси TiO2. При высоких температурах реагирует с углеродом, кремнием, фосфором, серой и др. Устойчив к морской воде, азотной кислоте, влажному хлору, органическим кислотам и сильным щелочам. Растворяется в серной, соляной и плавиковой кислотах, лучше всего — в смеси HF и HNO3. Добавление к кислотам окислителя предохраняет металл от коррозии при комнатной температуре. В соединениях проявляет валентность 2, 3 и 4.
Наименее устойчивы производные Ti(2). Соединения Ti(3) устойчивы в растворе и являются сильными восстановителями. С кислородом титан даёт амфотерную двуокись титана, закись Ti0 и окись Ti2O3, имеющие основной характер, а также некоторые промежуточные окислы и перекись TiO3. Галогениды четырёхвалентного титана, за исключением TiCl4 — кристаллические тела, легкоплавкие и летучие в водном растворе гидрализованы, склонны к образованию комплексных соединений, из которых в технологии и аналитической практике имеет значение фтортитанат калия K2TiF6. Важное значение имеют карбид TiC и нитрид TiN— металлоподобные вещества, отличающиеся большой твёрдостью (карбид титан тверже карборунда), тугоплавкостью (TiC, t°пл. 3140°; TiN, t°пл. 3200°) и хорошей электропроводностью.
1.2 Минералогия титана
Основные минералы титанового сырья
В настоящее время известно 214 минералов титана, в которых он является одним из главных компонентов; из них 85 относятся к оксидным титановым минералам, около 100 составляют группу силикатов, два – нитрида, четыре – бората, один – карбонат, четыре – фосфата и три – арсената.
В породообразующих минералах титан концентрируется в основном в темноцветных силикатах. К минералам титана, образующим месторождения, относятся ильменит(FeTiO3)- (43,7—52,8 % TiO2), рутил(TiO2)-(94,2-99,0 %), анатаз-, лейкоксен-(56,3-96,4 %), сфен, лопарит-(38,3-41,0 %), сфен, титанит-(CaTi(SiO4)(O,OH,F)-(33,7-40,8 %), перовскит и другие, но главное промышленное значение имеют первые четыре минерала. Перспективным минералом титана является титаномагнетит. Он содержит TiO2 от нескольких до 305 и , как правило, примесь V2O5 . При плавке титаномагнетита получают чугун и титаносодержащий шлак (до 4% TiO2 ), который обычно рассматривается как отход. Наиболее перспективны высокотитанистые титаномагнетиты, содержащие более 16% TiO2
Промышленные типы месторождений
Промышленные типы месторождений титана представлены основными генетическими группами: магматогенными, метаморфогенными(коренными) и экзогенными(россыпными). Россыпные месторождения в мировой сырьевой базе титана занимают ведущее положение по запасам(52,3%), добыче (67 – 70%).
Метаморфизованные месторождения титана образуются при метаморфизме древних россыпей и коренных первично-магматических руд. Верхнепротерозойские метоморфизованные россыпи в пределах Башкирского поднятия приурочены к песчаникам зильмердакской свиты, где встречены прослои мощностью до 2.5 м, обогащенные ильменитом (до 250-400 кг/т) и цирконом (до 30 кг/т).
Высококачественные ильменит-магнетитовые массивные и вкрапленные ильменитовые руды образуются при региональном метаморфизме первично-магматических руд
Наиболее значительные магматические месторождения титана приурочены к крупным массивам анортозитовой формации площадью в сотни и тысячи квадратных километров. В России к ним принадлежат месторождения Восточного Саяна (Мало-Тагульское, Лысанское, Кручининское), в Канаде – Лак-Тио, в США – Тегавус.
Другие рефераты на тему «Геология, гидрология и геодезия»:
- Проверочный расчет КБТ при бурении с частичной нагрузкой
- Проект поворота рек в Китае
- Инженерная геология, механика грунтов, основания и фундаменты
- Разработка и исследование технологии геодезического обеспечения строительства и установки технологического оборудования ускорительно-накопительного комплекса (УНК)
- Анализ состояния геоинформационных технологий в решении типовых задач управления региональной недвижимостью Тульской области
Поиск рефератов
Последние рефераты раздела
- Анализ условий формирования и расчет основных статистических характеристик стока реки Кегеты
- Геодезический чертеж. Теодолит
- Геодезические методы анализа высотных и плановых деформаций инженерных сооружений
- Асбест
- Балтийско-Польский артезианский бассейн
- Безамбарное бурение
- Бурение нефтяных и газовых скважин