Нелинейные САУ
Когда говорят об устойчивости линейных систем, имеют в виду просто сходимость к положению равновесия процесса, вызванного произвольным начальным отклонением или возмущением. Используя геометрический образ фазового пространства, можно уточнить теперь понятие устойчивости нелинейной системы.
Равновесие называется устойчивым «в малом», если ему соответствует в фазовом пространстве системы усто
йчивая особая точка, то есть можно указать в фазовом пространстве область, из любой точки которой фазовые траектории ведут к точке равновесия.
Таким образом, утверждение, что регулируемый режим устойчив «в малом», означает лишь наличие точки — аттрактора, но не определяет как-либо границ её области притяжения. Пусть фазовый портрет системы построен и выделена область притяжения особой точки (область устойчивости). Назовем ее областью А.
Укажем теперь на фазовой плоскости область, в пределах которой могут оказаться значения координат х1, х2 рассматриваемой системы автоматического регулирования в соответствии с условиями ее технической эксплуатации, то есть область рабочих диапазонов х1 и х2 . Назовем ее областью В.
Если все точки области В принадлежат области А, то регулируемый режим называется устойчивым «в большом».
На рис.6 показан пример фазового портрета, в котором область устойчивости ограничена неустойчивым предельным циклом. Две области значений х1, х2 при любых физически возможных возмущениях системы заданы в виде прямоугольников. В случае рис.6, а система устойчива «в большом», а в случае рис.6, б она устойчива «в малом», но не устойчива «в большом», так как при некоторых значениях х1, и х2, возможных в системе, регулируемый режим не восстанавливается.
Если область притяжения особой точки (область устойчивости) не ограничена и охватывает все фазовое пространство, то есть система устойчива после любых начальных отклонений, то она называется устойчивой «в целом». Если линейная система устойчива, то она всегда устойчива «в целом». Нелинейные системы, имеющие единственное положение равновесия, устойчивое «в целом», составляют класс нелинейных систем, в смысле топологической структуры фазового пространства эквивалентных линейным.
Разработано множество аналитических методов исследования нелинейных систем. Однако как было отмечено выше, все они включают в большинстве случаев существенные упрощающие предположения. Между тем, использование современных быстродействующих компьютеров позволяет за сравнительно короткое время строить реальные фазовые портреты систем без упрощающих предположений. При этом путём прямых компьютерных экспериментов удаётся в большинстве случаев выявить бифуркационные границы и установить комбинации параметров системы, обеспечивающие её устойчивость в целом.
Рис.6. Области устойчивости системы в фазовой плоскости: а — «в большом» и б — «в малом»
Контрольные вопросы
1. Что такое неустойчивая система?
2. В чем особенность фазовых портретов нелинейных систем?
3. Что называется предельным циклом нелинейной системы?
4. Устойчивый и неустойчивый предельный цикл?
5. Роль неустойчивого предельного цикла как границы устойчивости?
6. Может ли линейная система быть устойчивой в малом и неустойчива в большом?
Другие рефераты на тему «Коммуникации, связь и радиоэлектроника»:
Поиск рефератов
Последние рефераты раздела
- Микроконтроллер системы управления
- Разработка алгоритмического и программного обеспечения стандарта IEEE 1500 для тестирования гибкой автоматизированной системы в пакете кристаллов
- Разработка базы данных для информатизации деятельности предприятия малого бизнеса Delphi 7.0
- Разработка детектора высокочастотного излучения
- Разработка микропроцессорного устройства для проверки и диагностики двигателя внутреннего сгорания автомобиля
- Разработка микшерного пульта
- Математические основы теории систем