Конструктивно-технологические варианты исполнения биполярного и полевого транзисторов в одном кристалле. Инжекционно-полевая логика
При изготовлении биполярного и полевого транзисторов в одном кристалле возникает проблема оптимизации характеристик и физико-топологических структур в связи с необходимостью оптимизации одновременно двух биполярных транзисторов п+-р-п- и р-n-р-типов, создаваемых в одном кристалле.
Из описания принципа работы полевого транзистора с управляющим р-п переходом ясно, что одновременно обеспечит
ь низкое напряжение отсечки и высокое напряжение пробоя р-п перехода затвор – исток полевого транзистора можно созданием тонкого и слаболегированного канала. Для обеспечения большого коэффициента передачи тока и высокой граничной частоты биполярного транзистора база также должна быть тонкой. Но при снижении степени легирования базы уменьшаются предельная частота усиления и напряжение прокола базы. Такая взаимосвязь конструктивно-технологических параметров областей и электрических характеристик транзисторов определила один из возможных путей создания интегрированных биполярных и полевых с управляющим электродом структур – формирование активных областей транзисторов различных типов с различной толщиной и степенью их легирования.
Один из вариантов такого рода структур, характеризующийся малым напряжением отсечки ПТУП, представлен на рис. 1. В данном случае уменьшение напряжения отсечки достигается за счет использования V-ПТУП. Технология изготовления данной структуры состоит из следующих этапов: в кремниевую подложку р-типа с эпитаксиальным слоем n-типа, содержавшую скрытый п+-слой и изолирующие диффузионные области р+-типа, проводится диффузия для формирования областей базы и канала р-типа. Затем с помощью фотолитографии вскрывается окно в окисном слое и осуществляется химическое травление базовой области в структуре ПТУП для образования V-образного углубления. Подложка имеет кристаллографическую ориентацию (100). Далее проводится диффузия для формирования областей n+ -типа эмиттера, затвора и омического контакта коллектора.
Рис. 1. Структура, содержащая биполярный и V- ПТУ П -транзистор:
/– подложка кремния р-типа; 2– эпитаксиальный слой; 3– скрытый слой; 4– изолирующие области; 5– базовая область; 6 – область канала р-типа; 7–V-образное углубление; 8– область эмиттера; 9- область затзора; 10– n+-область контакта коллектору
Этот конструктивно-технологический вариант изготовления микросхемы позволяет полностью совместить технологические операции формирования областей обоих типов транзисторов, но требует введения дополнительных операций фотолитографии и травления.
Обеспечить более точную регулировку концентрации легирующей примеси в канале, а следовательно и напряжения отсечки, по сравнению с диффузионной технологией, можно с помощью ионного легирования. Применение ионного легирования позволяет изготовлять микросхемы, содержащие на одном кристалле высококачественные биполярные транзисторы и высококачественные полевые транзисторы с точно согласованными параметрами. Структура, содержащая такие транзисторы, представлена на рис. 2. В ней одна ионно-легированная область образует канал р-типа между областями истока и стока, а вторая ионно-легированная область образует затворную область над этим каналом.
Такая технология включает операции диффузии базы, истока и стока, а также эмиттера и омических контактов коллектора и затвора. На следующих этапах изготовления микросхемы готовая пластина с диффузионными областями дополняется областями канала и затвора, формируемыми методом ионного легирования. Различие между структурой биполярный транзистор — ПТУП и структурой на основе обычной планарно-эпитаксиальной технологии заключается в наличии сформированного ионным легированием канала, заглубленного под поверхность полупроводникового материала в промежутке между областями истока и стока. В процессе изготовления этой структуры одна операция ионного легирования обеспечивает формирование канала p-типа между истоковым и стоковым контактами, которые представляют собой стандартные диффузионные области р-типа, формируемые одновременно с диффузией базы в биполярных транзисторах. С помощью второго ионного легирования формируется затворная область n-типа, закрывающая сверху область канала. Напряжение отсечки полевого транзистора с управляющим р-n переходом пропорционально суммарному количеству легирующей примеси, имеющемуся в его канале.
Рис. 2. Структура, содержащая биполярный транзистор и полевой транзистор с управляющим р-п переходом с ионно-легированным каналом (1) и ионно-легированным верхним управляющим затвором (2)
Рис. 3. Биполярно-полевая структура с диэлектрической изоляцией элементов, обеспечивающая высокий коэффициент усиления: 1– ионно-легированная область базы транзистора; 2– изолирующий окисел кремния; 3– поликристаллический кремний с большим удельным сопротивлением; 4–область канала полевого транзистора
При использовании диффузионной технологии напряжение отсечки полевых транзисторов контролируется очень плохо и получить два полевых транзистора с согласованными напряжениями отсечки почти невозможно. При переходе на формирование канала с помощью ионного легирования появляется возможность практически точно задать количество ионов примеси, необходимое для получения канала с заданными свойствами. В результате становится вполне реальным управлять абсолютными значениями напряжений отсечки и получить ПТУП с точно согласованными параметрами. В то же время формирование ионно-легированных каналов с малыми примесными концентрациями позволяет получить не только небольшие по абсолютному значению напряжения отсечки, но и высокие пробивные напряжения полевых транзисторов.
В рассмотренных выше вариантах структур биполярный транзистор — ПТУП особое внимание уделено обеспечению малых значений напряжения отсечки полевых транзисторов. Однако, при использовании этих структур в ОУ следует учитывать и необходимость обеспечения высоких электрических характеристик биполярных транзисторов, в частности, статического коэффициента передачи тока В. Для этих целей разработана структура биполярного транзистора с большим коэффициентом передачи тока, в которой область активной базы имеет низкую концентрацию легирующей примеси (N=2 .4·1015 см–3). Такой уровень легирования базы при ее малой толщине, обусловленной необходимостью обеспечения высокой граничной частоты и коэффициента передачи тока, достигается в данной структуре сочетанием ионной имплантации и диффузии.
Биполярно-полевая структура с диэлектрической изоляцией элементов, содержащая биполярный транзистор с большим коэффициентом В, изображена на рис. 3. Технологическая последовательность ее изготовления следующая: диффузия р+-областей, длительная диффузия для образования р-канала, ионное легирование и кратковременная диффузия р-области для образования базы биполярного транзистора, диффузия n+-областей для образования эмиттера биполярного и затвора полевого транзисторов.
Другие рефераты на тему «Коммуникации, связь и радиоэлектроника»:
- Усилительные свойства одиночных каскадов
- Расчет приемника для связной УКВ радиостанции
- Вторичные измерительные преобразователи и АЦП
- Паяные соединения. Технология магнитных дисков. Коммутационные устройства
- Метод статистической и гармонической линеаризации. Расчет автоколебаний по критерию Найквиста
Поиск рефератов
Последние рефераты раздела
- Микроконтроллер системы управления
- Разработка алгоритмического и программного обеспечения стандарта IEEE 1500 для тестирования гибкой автоматизированной системы в пакете кристаллов
- Разработка базы данных для информатизации деятельности предприятия малого бизнеса Delphi 7.0
- Разработка детектора высокочастотного излучения
- Разработка микропроцессорного устройства для проверки и диагностики двигателя внутреннего сгорания автомобиля
- Разработка микшерного пульта
- Математические основы теории систем