Голография
Задачу сравнения объекта с большим количеством ему подобных, более эффективно можно решать с помощью голографического метода оптической согласованной фильтрации. Области применения названного метода могут быть самыми разнообразными: для кодирования информации, улучшения качества фотографического изображения, создания запоминающих устройств большой емкости, распознавания и сравнения изображений
объектов, оперативного поиска информации в большом массиве. Проведенные экспериментальные исследования принципиально доказали возможность использования голографического метода для сравнительного исследования фотопортретов в целях идентификации личности, сравнение следов папиллярных узоров рук. Рассматриваемый метод применим для сравнения оттисков печатных форм и машинописных текстов, исполненных на новых аппаратах, не имеющих видимых дефектов шрифта.
4. Голографическая интерферометрия
Интерференция наблюдается при сложении двух волн, когда при условии их когерентности, т.е. постоянной разности фаз этих волн, возникает характерное пространственное распределение интенсивности света — интерференционная картина. Фотопластинка-детектор регистрирует это в виде чередующихся светлых и темных полос, или интерферограммы.
Для определения остаточных напряжений применялась и обычная интерферометрия, но эту работу можно было провести только в хорошо оборудованной лаборатории: требовалась специальная подготовка поверхности исследуемого объекта, придание ей правильной формы, специальное освещение и оборудование.
Когда создали лазер, т.е. источник излучения с высокой пространственной и временной когерентностью, стала развиваться оптическая голография — способ записи и восстановления световых волн, рассеянных объектом и несущих информацию о его форме (т.е. трехмерного образа объекта). Некоторые методики интерферометрии сильно упростились, так как снялись проблемы освещения и подготовки поверхности.
Принципиальная оптическая схема для записи голограммы по Лейту—Упатниексу показана на рис.1. Луч лазера (1) расширяется линзой (2) и делится полупрозрачным зеркалом (3) на две части. Одна часть — это опорный луч (ОЛ) — проходит через зеркало и сразу падает на фотопластинку-детектор (5). Вторая часть, отраженная от зеркала, освещает объект (4) и, диффузно рассеянная им, проходит через линзу (6) и тоже падает на детектор. Это предметный луч (ПЛ).
Рис.1. Принципиальная схема записи голограммы Лейта—Упатниекса: 1 — лазер, 2 — линза, 3 — полупрозрачное зеркало, 4 — объект, 5 — фотопластинка-детектор, 6 — линза в режиме лупы, ОЛ — опорный луч , ПЛ — предметный луч.
Заметим, что наличие линзы (6) не принципиально для записи голограмм, однако необходимо для измерения остаточных напряжений. Линза находится на фокусном расстоянии от объекта и поэтому работает в режиме лупы: на фотопластинке записывается не весь образ объекта, а малая, но увеличенная в 2—5 раз, его часть — область поверхности с отверстием. Это помогает рассмотреть довольно плотно расположенные (особенно на кромке отверстия) полосы интерферограммы.
С развитием голографии возникла голографическая интерферометрия, выполняемая гораздо проще, чем обычная, с меньшими затратами и ограничениями. Ее сущность такова: если совместить две голограммы объекта, записанные в различное время при разных состояниях поверхности объекта (один из способов — записать на одну фотопластинку), то при освещении этой фотопластинки лазерным лучом возникает результирующая интерферограмма, отражающая разницу геометрических состояний объекта. Линии интерферограммы показывают как перемещения целого объекта, так и деформацию его поверхности. Общие и локальные перемещения обычно хорошо разделяются.
Голография позволила исследовать объекты с любым, самым замысловатым рельефом. Подготовка поверхности стала минимальной. Главное — ее микрорельеф не должен измениться за время исследования. Другими словами: очистить, промыть и не загрязнить — требования на бытовом уровне.
Осталось несколько важных условий: интерферометрическую установку надо прочно крепить на объекте (или объект на установке), а одна из ее измерительных частей должна сниматься, чтобы не мешать сверлению, и надежно возвращаться на прежнее место. Для такого возврата существуют относительно простые методы, например: на одной части разъема по окружности расположены три стальных шарика с расстоянием по дуге 120°, а на ответной стальной части — три радиальных шлифованных паза под тем же углом. Такое устройство обеспечивает съем и возврат снимаемой части в прежнее положение с точностью до 0.1 мкм. Оно хорошо работало в стационарной лабораторной измерительной установке. В дальнейшем были разработаны оптические схемы, позволявшие исключить движущиеся части. Эти схемы были заложены в основу переносных приборов.
Сущность способа определения остаточных напряжений методом зондирующей лунки в сочетании с голографической интерферометрией заключается в следующем. Во время первой экспозиции записывается голограмма окрестности будущей лунки на поверхности объекта в исходном состоянии. Потом создается возмущение поверхности тела (например, путем высверливания или травления малой лунки), что позволяет проявиться остаточным напряжениям: изъятие малого объема приводит к локальным упругим перемещениям, пропорциональным остаточным напряжениям. Далее записывается голограмма возмущенной таким образом поверхности тела. В результате наложения голограмм при их одновременном восстановлении упругие перемещения поверхности в окрестности лунки выявляются в виде интерферограммы. Она наглядна и проста для расшифровки: в случае регистрации нормальной компоненты перемещений (перпендикулярной к исходной поверхности тела), полосы интерферограммы являются линиями уровня, т.е. равных перемещений, отличающихся по высоте на половину длины волны лазерного излучения~ 0.3 мкм (рис.2).
Оси симметрии интерференционной картины совпадают с направлениями экстремальных (главных) растягивающих и сжимающих остаточных напряжений. Величина напряжений пропорциональна числу интерференционных полос, причем цена полосы зависит от упругих свойств материала и от диаметра и глубины лунки и определяется по графикам (рис.3), рассчитанным на основании решения трехмерной задачи теории упругости.
Объем необходимых вычислений для получения значений напряжений очень мал, и они могут быть выполнены оператором сразу же при получении и наблюдении интерференционной картины. При этом, в отличие от тензометрирования, где измерения выполняются для отдельных точек, данный метод регистрирует линии уровня перемещений по всей области поверхности тела в окрестности зондирующей лунки, что позволяет визуально определять направления главных напряжений и делать качественные выводы о свойствах напряжений еще до подсчета числовых значений соответствующих величин.
Тем самым были созданы основы метода для массовой лабораторной работы по измерению остаточных напряжений. Начались исследования остаточных напряжений в сварных соединениях и отработка режимов сварки стали, алюминия, титана, магния. Вначале работа велась с образцами на лабораторном стенде. Новая методика оказалась эффективной при отработке технологии электронно-лучевой сварки и локальной термической обработки образцов разного сечения (плоских, тавровых, цилиндрических, сферических) из высокопрочных сталей разных марок и титановых сплавов.
Другие рефераты на тему «Коммуникации, связь и радиоэлектроника»:
Поиск рефератов
Последние рефераты раздела
- Микроконтроллер системы управления
- Разработка алгоритмического и программного обеспечения стандарта IEEE 1500 для тестирования гибкой автоматизированной системы в пакете кристаллов
- Разработка базы данных для информатизации деятельности предприятия малого бизнеса Delphi 7.0
- Разработка детектора высокочастотного излучения
- Разработка микропроцессорного устройства для проверки и диагностики двигателя внутреннего сгорания автомобиля
- Разработка микшерного пульта
- Математические основы теории систем