Математические основы теории систем

X 1 X 1

3) Нахождение передаточной функции по формуле Мейсона.

k-количество возможных путей от входа к выходу

-определитель графа

Pk-коэффициент передачи k пути от входа к выходу

-определитель всех касающихся контуров при удалении k-ого пути <

p>=1-(сумма коэффициентов передачи всех отдельных контуров)+(сумма всевозможных произведений из двух некасающихся контуров) - (сумма всевозможных комбинаций из трех некасающихся контуров)+…+…

Последовательность нахождения w(p) по формуле Мейсона:

1) В данном случае есть 1 путь от входа к выходу:

2) В системе имеется 4 замкнутых контуров:

3) Определитель системы включает 4 контура и 2 пары некасающихся контуров L1,L2; L1,L4

4) Количество сомножителей равно количеству прямых путей. Выражение для записывается как выражение для , но разрываются контуры, через которые проходит прямой путь Pi.

Сомножитель для первого пути. При размыкании первого пути 2 контура размыкаются, кроме L2,L4

5) Запишем и преобразуем выражение передаточной функции:

Найдем переходную функцию и построим ее график:

Найдем амплитудно-частотную характеристику (АЧХ):

Найдем фаза частотную характеристику (ФЧХ):

Определим оценки качества системы: прямые и косвенные.

Прямые оценки определяются графически по графику переходного процесса.

Время переходного процесса: tn=11

Перерегулирование:

Колебательность: п=0,5

Время нарастания регулируемой величины: t=0,385

Время первого согласования: tm=0,66

Косвенные оценки качества системы определяются по графику АЧХ.

Колебательность:

Резонансная частота: wp=0,83

Частота среза: wсp=10

Полоса пропускания частот:

II-часть

Задание1: По заданной корреляционной функции Kx(t) определить спектральную плотность Sx(w) для белого шума, который подается на вход формирующего фильтра.

По данной корреляционной функции определим спектральную плотность:

Найдем корни характеристических уравнений передаточной функции фильтра:

Изобразим эти корни на комплекснрй плоскости:

Система будет устойчивой, если корни характеристического уравнения лежат во 2-ом квадранте, следовательно, условию устойчивости системы соответствуют корни:

P7= -0,583+7,05i

P9= - 0,550+9,98i

P10= -0,570

Из этого следует, что передаточная функция фильтра будет иметь

следующий вид:

С учетом фильтра наша схема будет иметь следующий вид:

Найдем переходную функцию данной системы, построим ее график и определим прямые оценки качества системы.

Страница:  1  2  3 


Другие рефераты на тему «Коммуникации, связь и радиоэлектроника»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы