Учение о клетке
Введение
Большинство живых организмов, населяющих нашу планету, имеет клеточное строение, и их индивидуальное развитие начинается из одной клетки. Поэтому клетка представляет собой основную единицу строения и развития всех существующих сейчас растительных и животных организмов. Однако наряду с этими организмами известна большая группа неклеточных существ. Их строение значительно пр
още, чем строение клетки. В настоящее время наука о клетке – цитология («цитос» – клетка, «логос» – наука, греч.) – располагает исключительно большим материалом о строении и функциях клеток, об их химическом составе. Ознакомление с современным состоянием знаний о клетке, а также и о неклеточных формах организмов составляет основную задачу данной главы.
1. Изучение клетки
История изучения клетки. Огромное большинство клеток имеет микроскопически малые размеры и не может быть рассмотрено невооруженным глазом. Увидеть клетку и начать ее изучение оказалось возможным лишь тогда, когда был изобретен микроскоп. Первые микроскопы появились в начале XVII столетия. Для научных исследований микроскоп впервые применил английский ученый Роберт Гук (1665). Рассматривая под микроскопом тонкие срезы пробки, он увидел на них многочисленные мелкие ячейки. Эти ячейки, отделенные друг от друга плотными стенками, Гук назвал клетками, применив впервые термин «клетка».
В последующий период, охвативший вторую половину XVII столетия, весь XVIII в. и начало XIX в. шло усовершенствование микроскопа и накапливались данные о клетках-животных и растительных организмов. К середине XIX столетия микроскоп был значительно усовершенствован и стало многое известно о клеточном строении растений и животных. Основные материалы о клеточном строении растений в это время были собраны и обобщены немецким ботаником М. Шлейденом.
Все полученные данные о клетке послужили основой для создания клеточной теории строения организмов, которая была сформулирована в 1838 г. немецким зоологом Т. Шванном. Изучая клетки животных и растений, Шванн обнаружил, что они сходны по своему строению, и установил, что клетка представляет собой общую элементарную единицу строения животных и растительных организмов. Теорию о клеточном строении организмов Шванн изложил в классической работе «Микроскопические исследования о соответствии в строении и росте животных и растений».
В начале прошлого столетия знаменитый ученый, академик Российской Академии наук Карл Бэр открыл яйцеклетку млекопитающих и показал, что все организмы начинают свое развитие из одной клетки. Эта клетка представляет собой оплодотворенное яйцо, которое дробится, образует новые клетки, а из них формируются ткани и органы будущего организма.
Открытие Бэра дополнило клеточную теорию и показало, что клетка не только единица строения, но и единица развития всех живых организмов.
Чрезвычайно существенным дополнением к клеточной теории было и открытие деления клеток. После открытия процесса клеточного деления стало совершенно очевидно, что новые клетки образуются путем деления уже существующих, а не возникают заново из неклеточного вещества.
Теория клеточного строения организмов включает также важнейшие материалы для доказательства единства происхождения, строения и развития всего органического мира. Ф. Энгельс высоко оценил создание клеточной теории, поставив ее по значению рядом с законом сохранения энергии и теорией естественного отбора Ч. Дарвина.
К концу XIX в. микроскоп был усовершенствован настолько, что стало возможным изучение деталей строения клетки и были открыты основные ее структурные компоненты. Одновременно стали накапливаться знания об их функциях в жизнедеятельности клетки. К этому времени и относится появление цитологии, которая в настоящее время представляет собой одну из наиболее интенсивно развивающихся биологических дисциплин.
Методы изучения клетки. Современная цитология располагает многочисленными и часто довольно сложными методами исследования, которые позволили установить тонкие детали строения и выявить функции самых разнообразных клеток и их структурных компонентов. Исключительно большую роль в цитологических исследованиях продолжает играть световой микроскоп, который в наши дни представляет собой сложный, совершенный прибор, дающий увеличение до 2500 раз. Но и столь большое увеличение далеко не достаточно для того, чтобы видеть тонкие детали строения клеток, даже если рассматривать срезы толщиной 5–10 мкм1, окрашенные специальными красителями.
Совершенно новая эпоха в изучении строения клетки началась после изобретения электронного микроскопа, который дает увеличение в десятки и сотни тысяч раз. Вместо света в электронном микроскопе используется быстрый поток электронов, а стеклянные линзы светооптического микроскопа заменены в нем электромагнитными полями. Электроны, летящие с большой скоростью, сначала концентрируются на исследуемом объекте, а затем попадают на экран, подобный экрану телевизора, и на нем можно либо наблюдать увеличенное изображение объекта, либо его фотографировать. Электронный микроскоп был сконструирован в 1933 г., а особенно широко стал применяться для исследования биологических объектов в последние 10–15 лет.
Для исследования в электронном микроскопе клетки подвергаются очень сложной обработке. Приготовляются тончайшие срезы клеток, толщина которых равна 100–500 А. Только такие тонкие срезы пригодны для электронно-микроскопического исследования в связи с малой проницаемостью их для электронов.
В последнее время все больше и больше используются химические методы исследования клетки. Специальная отрасль химии – биохимия располагает в наши дни многочисленными тонкими методами, позволяющими точно установить не только наличие, но и роль химических веществ в жизнедеятельности клетки и целого организма. Созданы сложные приборы, называемые центрифугами, которые развивают огромную скорость вращения (несколько десятков тысяч оборотов в минуту). С помощью таких центрифуг можно легко отделить структурные компоненты клетки друг от друга, так как они имеют разный удельный вес. Этот очень важный метод дает возможность изучать отдельно свойства каждой части клетки.
Изучение живой клетки, ее тончайших структур и функций – задача очень нелегкая, и только сочетание усилий и колоссальной работы цитологов, биохимиков, физиологов, генетиков и биофизиков позволило детально изучить ее структурные элементы и определить их роль.
2. Строение клетки
Клетка любого одноклеточного и многоклеточного организма состоит из двух важнейших, неразрывно связанных между собой частей: цитоплазмы и ядра, которые представляют элементарную целостную живую систему.
С формой, размерами и функциями клеток различных тканей и органов многоклеточных организмов вы уже познакомились раньше. А так же основные органоиды клеток растений и животных, открытые и подробно изученные с помощью светового микроскопа, вам также уже известны.
Но даже самого большого увеличения светового микроскопа оказалось недостаточно для того, чтобы увидеть и изучить тонкое строение органоидов цитоплазмы и детали строения ядра. Эта задача была выполнена только с помощью электронного микроскопа, созданная на основе электронно-микроскопического исследования. Рассмотрение тонкого (а точнее – ультратонкого) строения клетки на основе этой схемы мы начнем с клеточной оболочки, основу которой составляет наружная клеточная мембрана.
Другие рефераты на тему «Биология и естествознание»:
Поиск рефератов
Последние рефераты раздела
- Влияние экологических факторов на разнообразие моллюсков разнотипных искусственных и естественных водоемов
- Влияние экологии водоемов на биологическое разнообразие фауны
- Влияние фтора и фторосодержащих соединений на здоровье населения
- Влияние факторов внешней среды на микроорганизмы
- Влияние физической нагрузки на уровень адренокортикотропного гормона, адреналина, кортизола, кортикостерона в сыворотке крови спортсменов
- Временные аспекты морфогенетических процессов. Эволюция путем гетерохронии
- Вопросы биоэтики