Процесс фотосинтеза

1. Фотосинтез и первичная биологическая продуктивность

Фотосинтез (от греч. φωτο- — свет и σύνθεσις — синтез, совмещение, помещение вместе) — процесс образования органических веществ из углекислого газа и воды на свету при участии фотосинтетических пигментов (хлорофилл у растений, бактериохлорофилл и бактериородопсин у бак

терий). В современной физиологии растений под фотосинтезом чаще понимается фотоавтотрофная функция — совокупность процессов поглощения, превращения и использования энергии квантов света в различных эндэргонических реакциях, в том числе превращения углекислого газа в органические вещества.

Фотосинтез является основным источником биологической энергии, фотосинтезирующие автотрофы используют её для синтеза органических веществ из неорганических, гетеротрофы существуют за счёт энергии, запасённой автотрофами в виде химических связей, высвобождая её в процессах дыхания и брожения. Энергия получаемая человечеством при сжигании ископаемого топлива (уголь, нефть, природный газ, торф) также является запасённой в процессе фотосинтеза.

Фотосинтез является главным входом неорганического углерода в биологический цикл. Весь свободный кислород атмосферы — биогенного происхождения и является побочным продуктом фотосинтеза. Формирование окислительной атмосферы (кислородная катастрофа) полностью изменило состояние земной поверхности, сделало возможным появление дыхания, а в дальнейшем, после образования озонового слоя, позволило жизни выйти на сушу.

Биологическая продуктивность, образование биомассы организмами, выражаемое потоками органического вещества и его потенциальной химической энергии на единицу площади за единицу времени. Понятие биологическая продуктивность применимо к растительности, сообществам (фитоценозам), к их отдельным ярусам, к отдельным популяциям растений и животных. Продуктивность всех популяций организмов на единицу площади характеризует биологическая продуктивность биогеоценозов и экосистем. Биологическая продуктивность количественно оценивают по её результату главным образом по годичной биологической продукции сухого органического вещества (в т/га • год, г/м2 • год), или энергии (Дж/м2 • год, ккал/га • год, кал/м2 • год). Специфику процесса изучает физиология растений. Биологическая продуктивность иногда отождествляют с запасами биомассы на единицу площади, что может лишь отчасти характеризовать биологическая продуктивность. Различают первичную и вторичную биологическую продуктивность. Первичная биологическая продуктивность характеризуется образованием биомассы (первичной продукции) в процессе фотосинтеза зелёными растениями (автотрофами), которые образуют первый трофический уровень экосистемы и служат началом всех цепей питания. К первичным продуцентам относят и некоторые хемосинтезирующие бактерии. В процессе утилизации вещества и энергии первичной продукции образуется биомасса всех гетеротрофных организмов (бактерий, грибов и животных), называемых консументами. Продукция консументов характеризует вторичную биологическая продуктивность, к которой относят и массу хищных животных, питающихся растительноядными и другими хищниками.

Первичная биологическая продуктивность.

При исследованиях первичной биологической продуктивности наземных биогеоценозов определяют ряд показателей, которые затем используют в качестве отдельных статей баланса органические вещества на конкретных участках. Продукция, определяемая с учётом затрат вещества и энергии на процессы метаболизма самих организмов-продуцентов, называется первичной брутто-продукцией, или валовой продукцией (обычно обозначают GPP — от англ, gross primary production). Разность между первичной брутто-продукцией и затратами растений на дыхание (Ra) определяет первичную нетто-продукцию — NPP (от англ, net primary production). В лесном фитоценозе NPP включает в себя не только чистую продукцию прироста за учитываемый период (истинный прирост фитомассы) — NEP (net ecosystem production), но и продукцию, перешедшую за то же время в опад (листья, цветки, семена и др.) и отпад (отмершие деревья, сучья и др.), которые суммарно обозначаются L, а также часть продукции живых растений, пошедшую на корм животных-фитофагов (консумпцию) — Сa. Сумму этих показателей часто называют гетеротрофным дыханием (Rh), поскольку энергия в обоих этих потоках (Rh=L+Ca) освобождается главным образом с участием гетеротрофных организмов. Для консументов, независимо от их трофической специализации, применяют иную схему. Отчуждаемая при консумпции фитофагами продукция растений в некотором количестве поедается животными, остальная (огрызки, объедки) поступает в опад. Съеденная пища частично ассимилируется организмами, частично экскре-тируется и поступает в детрит. За счёт продуктов ассимиляции происходит прирост биомассы, т. е. формируется продукция и поддерживаются процессы метаболизма. В продукцию включаются вещество или энергия прироста (привеса) животных за изучаемый период и прироста потомства. Эти величины, с учётом вещества и энергии элиминированных особей, характеризуют прирост биомассы животных. Биомасса животных-иммигрантов в продукцию не включается. При этом ассимилированная пища и прирост биомассы животных соответствуют общей (брутто) и чистой (нетто) продукции автотрофов.

Первичная биологическая продуктивность зависит от интенсивности фотосинтеза растениями и продолжительности его периода, фотосинтезирующей поверхности фитоценозов и древостоев, выражаемой индексом листовой поверхности и характером расположения листвы в толще полога, а также от кол-ва поступающей фотосинтетической радиации, условий увлажнения и минерального питания. Кульминация первичной продукции насаждений, выражаемая чистой продукцией (NPP) или истинным приростом фитомассы (NEP), приходится на возраст 20—40 лет. Однако в искусств, насаждениях она наступает раньше, чем в естественных, хотя с возрастом различия Б. п. лесных культур и естественных древостоев сглаживаются.

2. Физиологическая роль азота, круговорот азота в атмосфере

Азот – биоэлемент, структурная единица органических соединений, участвует в построении организмов и обеспечении их жизнедеятельности. Входит в состав важнейших биополимеров: белков, нуклеиновых кислот (ДНК, РНК); некоторых витаминов и гормонов. В воздухе азота содержится 78% по объему и 75,5% по массе.

Азотфиксирующие бактерии способны усваивать азот непосредственно из воздуха, превращая его в аммиак. Они живут самостоятельно, например азотобактер, цианобактерии, азоспириллы, или поселяются в корнях бобовых растений (клевер, горох, люпин, вика и др.) – бактерии рода ризобиум. Над 1 га почвы в атмосфере содержится более 70 тыс. т свободного азота, и только в результате азотфиксации часть этого азота становится доступной для питания высших растений (содержание доступного для растения азота в почве очень невелико). При связывании N2 клубеньковыми бактериями в симбиозе с растениями семейства бобовых почва ежегодно обогащается азотом на 200–300 кг/га, а свободноживущие бактерии вносят в почву азота 1–3 кг/га в год. На рисовых полях свободноживущие цианобактерии фиксируют 30–50 кг молекулярного азота на 1 га в год. Известно довольно много азотфиксаторов: бактерии, актиномицеты, дрожжевые и плесневые грибы, синезеленые водоросли.

Страница:  1  2  3 


Другие рефераты на тему «Биология и естествознание»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы