Разработка и исследование технологии геодезического обеспечения строительства и установки технологического оборудования ускорительно-накопительного комплекса (УНК)
Схема астрономо-геодезической сети представляет собой полигон с привязкой к исходному пункту (рисунок 5). Среднее расстояние между пунктами - 4км. В качестве измерений выступают разности высот квазигеоида, вычисляемые по составляющим уклонений отвесных линий.
Формула для вычисления разности высот квазигеоида имеет вид:
(4)
где D12 – расстояние между пунктами 1 и 2;
ξ, η – составляющие уклонения отвеса;
A12 - геодезический азимут направления с пункта 1 на пункт 2.
Уравнивание астрономо-геодезической сети выполнено коррелатным способом.
Для астропункта 20А аномалия высоты принята равной нулю. Пользуясь уравненными значениями аномалий высот zi, построим плоскость, наилучшим образом приближенную к астропунктам на поверхности квазигеоида.
Отклонения от неё nzi будут характеризовать степень неоднородности гравитационного поля.
Именно они могут оказывать влияние на результаты физических экспериментов. В таблице 3 приведены значения отклонений nzi. Величины отклонений nzi от вероятнейшей плоскости не превышают ср. кв. погрешности их определения (~1,1мм).
Использование астрономических наблюдений позволило выявить характер гравитационного поля в пределах объекта строительства: наклон проектной плоскости орбиты ускорителя, вызываемый постоянной составляющей аномалий высот на 5-ти астропунктах, уверенно прослеживается в направлении с северо-востока на юго-запад. По отношению к заданному наклону проектной плоскости (0,67мрад) эта величина невелика (0,01мрад) и может не учитываться.
Таблица 3
Результат вычисления положения вероятнейшей плоскости по значениям аномалий высот астропунктов наземной сети УНК
астропункт |
Уравненные аномалии высот |
Составляющие аномалий высот | |
образуют вероятнейшую плоскость |
отклонения от вероятнейшей плоскости | ||
zi, мм |
zi¢,мм |
nzI, мм | |
20A 511A 14A 10A 7A |
0,00 24,19 61,43 85,08 25,58 |
-0,19 +25,15 +60,25 +85,68 +25,37 |
+0,19 -0,96 +1,18 -0,60 +0,20 |
В пятой главе «Разработка методики анализа результатов наблюдений за деформациями плановой наземной геодезической основы» рассматриваются теоретические основы оценивания внутренних деформаций плановых сетей на основе принципа конформного преобразования. В связи с тем, что для кольцевых ускорителей важно знать величины деформаций по радиусу и азимуту, алгоритм доработан с целью применения его в системе полярных координат.
Накопление случайных и систематических погрешностей в протяженных геодезических сетях приводит к тому, что значения полной деформации, определенные как разность координат одноимённых пунктов из 2-х циклов измерений, не всегда соответствуют фактическим смещениям. В результате уравнивания наземной сети УНК координаты наиболее удалённых от исходного пунктов определяются с погрешностями, достигающими 50мм. Поэтому при обработке деформационных измерений было принято решение использовать метод разделения полной деформации δхj и δуj на две составляющие – внутреннюю δхj+ δуj+ и внешнюю δxj(β) δyj(β):
(5)
Внутренняя деформация характеризует взаимное смещение плановых пунктов. Внешняя деформация пунктов сети определяется набором параметров, связанных с её разворотом относительно исходной точки, изменением линейного масштаба, параллельным сдвигом по осям координат. Нормальная работа кольцевого ускорителя не зависит от внешней деформации, но чувствительна к взаимному смещению пунктов. Автором предлагается следующая последовательность оценивания внешних и внутренних деформаций.
1. Уравниваются начальный и текущий циклы измерений с одной твёрдой точкой и исходным дирекционным углом (нуль-свободная сеть).
2. Вычисляется полная деформация сети:
δxj = xj – xj0
δyj = yj – yj0 . (6)
3. Осуществляется переход от нуль-свободной сети к свободной: координаты j –ой точки вычисляются от центра тяжести:
xj = x0 + Lj cosα
yj = y0 + Lj sinα , (7)
где x0=[xj]/N , y0 =[yj]/N .
4. Полный дифференциал от выражения (7) даёт формулу определения внешней составляющей деформации (8) c учётом того, что δm = δL/L. Её компоненты интерпретируются как дифференциалы изменения координат в определенной системе, обусловленные конформным преобразованием, сохраняющим геометрию сети:
, (8)
где ,
δх0, δу0 - параметры конформного преобразования, приводящие к
сдвигу сети относительно центра тяжести по осям координат х и у;
δm – параметр изменения масштаба;
δα – параметр связанный с разворотом системы координат.
5. Вычисляется величина внутренней деформации как разность между полной деформацией и её внешней составляющей:
. (9)
Параметры конформного преобразования определяются по способу наименьших квадратов под условием .
6. Ср.кв. погрешность внутренней деформации вычисляется по известной формуле: (10),
в которой матрица весовых коэффициентов для декартовой системы координат: (11)
В формуле (11) матрица (12)
где I – единичная матрица размера 2N(2N – количество пунктов в сети);
е – матрица, составленная из частных производных равенств (7):
. (13)
7. Внутренняя деформация в декартовой и полярной системах координат представляется в матричном виде:
Другие рефераты на тему «Геология, гидрология и геодезия»:
- Построение геодезического обоснования для производства крупномасштобной топографической съемки
- Геологические сведения о Земле
- Гидрогеологическое обоснование и проект водозабора подземных вод трещиноватых известняков эоценового возраста
- Подземные воды зоны многолетней мерзлоты и реки
- Тектонические движения и тектонические деформации
Поиск рефератов
Последние рефераты раздела
- Анализ условий формирования и расчет основных статистических характеристик стока реки Кегеты
- Геодезический чертеж. Теодолит
- Геодезические методы анализа высотных и плановых деформаций инженерных сооружений
- Асбест
- Балтийско-Польский артезианский бассейн
- Безамбарное бурение
- Бурение нефтяных и газовых скважин