Вывод уравнения Лапласа. Плоские задачи теории фильтрации
Введение
Подземная гидромеханика — наука о движении жидкостей, газов и их смесей в пористых и трещиноватых горных породах — теоретическая основа разработки нефтяных и газовых месторождений, одна из профилирующих дисциплин в учебном плане промыслового и геологического факультетов нефтяных вузов.
В основе подземной гидравлики лежит представление о том, что нефть, газ и вода, заключенные
в пористой среде, составляют единую гидравлическую систему.
Теоретической основой ПГД является теория фильтрации - наука, описывающая данное движение флюида с позиций механики сплошной среды, т.е. гипотезы сплошности (неразрывности) течения.
Особенностью теории фильтрации нефти и газа в природных пластах является одновременное рассмотрение процессов в областях, характерные размеры которых различаются на порядки: размер пор (до десятков микрометров), диаметр скважин (до десятков сантиметров), толщины пластов (до десятков метров), расстояния между скважинами (сотни метров), протяженность месторождений (до сотен километров).
В данной курсовой работе выводится основное уравнение Лапласа и рассматриваются плоские задачи теории фильтрации, а так же их решение.
1. Дифференциальные уравнения движения сжимаемой и несжимаемой жидкости в пористой среде. Вывод уравнения Лапласа
При выводе дифференциального уравнения движения сжимаемой жидкости исходными уравнениями являются следующие:
закон фильтрации жидкости; в качестве закона фильтрации принимаем линейный закон фильтрации, выражающийся формулами (3.1)
, (3.1)
уравнение неразрывности (3.2)
, (3.2)
уравнение состояния. Для капельной сжимаемой жидкости уравнение состояния может быть представлено в виде (3.3)
, (3.3)
где - плотность жидкости при атмосферном давлении .
Подставляя в уравнение неразрывности (3.2) вместо проекций скорости фильтрации vx, vy и vz их значения из линейного закона, выражающегося формулой (3.1), получим:
, (3.4)
уравнения состояния (3.3) имеем:
, (3.5)
Откуда
,
,
. (3.6)
Подставляя эти значения частных производных , и в уравнение (3.4), получим:
Вводя оператор Лапласа
уравнение (3.7) более кратко можно написать в виде
, (3.8)
Учитывая, что
, (3.9)
уравнение (3.7) можно приближенно представить в виде:
,(3.10)
Уравнение (3.7) или приближенное заменяющее его уравнение (3.10) есть искомое дифференциальное уравнение неустановившегося движения сжимаемой жидкости в пористой среде. Упомянутые уравнения имеют вид «уравнения теплопроводности», интегрирование которого при различных начальных и граничных условиях рассматривается в каждом курсе математической физики.
Решение различных задач о неустановившемся движении однородной сжимаемой жидкости в пористой среде, основанное на интегрировании уравнения (3.7) при различных начальных и граничных условиях, дается в книгах В. Н. Щелкачева, И. А. Чарного и М.Маскета. При установившемся движении сжимаемой жидкости и вместо уравнения (3.7) имеем:
, (3.11)
Уравнение (3.11) называется уравнением Лапласа.
При установившейся и неустановившейся фильтрации несжимаемой жидкости плотность жидкости постоянна следовательно, величина, стоящая в правой части уравнения (3.4), равна нулю. Сокращая левую часть этого уравнения на постоянную и выполнив дифференцирование, получим:
, (3.12)
Таким образом, установившаяся и неустановившаяся фильтрация несжимаемой жидкости описывается уравнением Лапласа (3.12).
2. Плоские задачи теории фильтрации
При разработке нефтяных и газовых месторождений (НГМ) возникает два вида задач:
1. Задаётся дебит скважин и требуется определить необходимое для этого дебита забойное давление и, кроме того, давление в любой точке пласта. В данном случае величина дебита определяется значением предельной для имеющихся коллекторов депрессией, при которой ещё не наступает их разрушение, или прочностными характеристиками скважинного оборудования, или физическим смыслом. Последнее означает, например, невозможность установления нулевого или отрицательного забойного давления.
2. Задаётся забойное давление и требуется определить дебит. Последний вид условия встречается наиболее часто в практике разработки НГМ. Величина забойного давления определяется условиями эксплуатации. Например, давление должно быть больше давления насыщения для предотвращения дегазации нефти в пласте или выпадения конденсата при разработке газоконденсатных месторождений, что снижает продуктивные свойства скважин. Наконец, если возможен вынос песка из пласта на забой скважины, то скорость фильтрации на стенке скважины должна быть меньше некоторой предельной величины.
Замечено, что при эксплуатации группы скважин в одинаковых условиях, т.е. с одинаковым забойным давлением, дебит всего месторождения растёт медленнее увеличения числа новых скважин с теми же забойными условиями (рис.4.1). Увеличение дебита при этом требует понижения забойного давления.
Для решения поставленных задач решим задачу плоской интерференции (наложения) скважин. Предположим, что пласт - неограниченный, горизонтальный, имеет постоянную мощность и непроницаемые подошву и кровлю. Пласт вскрыт множеством совершенных скважин и заполнен однородной жидкостью или газом. Движение жидкости - установившееся, подчиняется закону Дарси и является плоским. Плоское движение означает, что течение происходит в плоскостях, параллельных между собой и картина движения во всех плоскостях идентична. В связи с этим разбирается течение в одной из этих плоскостей - в основной плоскости течения.
Другие рефераты на тему «Геология, гидрология и геодезия»:
Поиск рефератов
Последние рефераты раздела
- Анализ условий формирования и расчет основных статистических характеристик стока реки Кегеты
- Геодезический чертеж. Теодолит
- Геодезические методы анализа высотных и плановых деформаций инженерных сооружений
- Асбест
- Балтийско-Польский артезианский бассейн
- Безамбарное бурение
- Бурение нефтяных и газовых скважин