Этические аспекты игровых технологий управления конфликтом
Второй подход предполагает невозможность управления конфликтом и оптимизацию взаимодействия, теоретически обосновывая развитие конфликта как саморегулирующегося механизма. Вместо "решения", "разрешения" и других подобных терминов применяют термин "преодоление", подразумевая, что конфликт не ликвидируется, но обеспечивает развитие, усиливая в организации дифференциа
цию, прежде всего профессиональную, а в обществе - социальную стратификацию, что и лежит в основе социальной и организационной стабильности. Он трансформируется в другие конфликты, менее разрушительные, в других сферах, других социальных измерениях. Данный подход не отрицает возможность и даже конструктивность политической и административной манипуляции (не всякой) в начальных фазах конфликта, но основывается прежде всего на обеспечении информационной полноты взаимодействия субъектов и необходимом риске, обеспечивающем возможность перехода в его последнюю фазу:
Общая тенденция в последние годы такова: все больше теоретиков и практиков социальной психологии склоняются ко второму подходу при некотором сохранении ориентации на психологическую манипуляцию, психологическое смягчение деструктивных проявлений конфликта. Базовым в данном выборе становится то, что первый подход строится на субъект-объектном общении, в то время как второй - на субъект-субъектном.
Ко второму же подходу склоняются и практикующие политические технологи и оргконсультанты, опирающиеся именно на такую конфликтологию в моделировании идущих в организации процессов и обеспечении будущего успеха самой фирмы и ее менеджеров. Они заменяют "традиционные" техники (в том числе изучение общественного мнения в организации) конфликтологическими исследованиями персонала. Подход позволяет вычислять группы сторонников и противников, причем не только реальных, но прежде всего потенциальных (особенно среди не определившихся в своих профессиональных, карьерных, социальных предпочтениях, организационно неактивных), и наиболее приемлемые формы работы с ними.
Выбор менеджером одного из двух подходов определяет и выбор им, как следствие первого выбора, форм работы и рекомендаций своей команде, структурным подразделениям по действиям в конфликтных ситуациях.
С него и должно начинаться сегодня управление, ориентированное на долговременный успех и перспективу. [8, с.423]
2. Формально-логические модели конфликтов
В соответствии с определением, математическая теория игр является теорией математических моделей принятия оптимальных решений в условиях конфликта (а также в условиях неопределенности). Поэтому вопросы, связанные с оптимальным поведением сторон в конфликтах, с желательными исходами конфликтов, являются в ней основными. Непосредственных вопросов такого рода три:
1) Какими принципами оптимальности следует руководствоваться при рассмотрении конфликтов того или иного типа? Иначе говоря, в чем состоит (оптимальное) решение того или иного конфликта?
2) Реализуем ли применительно к данному классу конфликтов выбранный для него принцип оптимальности? Формально этот вопрос сводится к существованию у конфликтов из заданного класса тех решений, которые выбранным принципом квалифицируются как оптимальные.
3) В чем состоит применение выбранного принципа оптимальности к данному конфликту (или к данному классу конфликтов)? Ответом на этот вопрос должно служить нахождение решения конфликта в том же смысле слова, в каком принято говорить о нахождении решения применительно к любой математической задаче.
К сожалению, понятие оптимальности принимаемого решения значительно труднее поддается формализации, чем понятия конфликта и принятия решения. Эта задача и до сих пор - одна из самых важных в теории игр.
Так как математическая теория игр - теория моделей принятия решений, она не занимается этими решениями как психологическими или волевыми актами; не занимается она и вопросами их фактической реализации. [8, с.426]
В рамках теории игр, принимаемые решения выступают как достаточно упрощенные и идеализированные схемы реальных явлений. При этом, разумеется, степень этого упрощения не должна превосходить известных пределов, за которыми модель уже утрачивает существенные черты явления.
То, что теория игр есть теория математических моделей, и она является разделом математики, означает, что конструируемые в ней модели являются формальными, знаковыми (а не, скажем, макетными или аналоговыми) и их формирование и средства анализа также формальны.
В частности, формально же должны вводиться и основные понятия.
Практически это означает, что эти понятия должны задаваться своими свойствами, которым тем самым придается смысл аксиом. Дальнейшее образование понятий и установление свойств может вестись уже без того, чтобы прибегать к каким-либо "интуитивным" соображениям. Сказанное отнюдь не оспаривает практической целесообразности использования интуиции, особенно как способа практической проверки формально полученных результатов.
В соответствии со сказанным при построении теории с самого начала необходимо формализовать те понятия, которые входят в ее определение:
1) конфликт,
2) принятие решения и 3) оптимальность решения. [8, с.427]
2.1 Конфликт и его формальная модель
Принимающие участие в конфликте стороны элементы некоторого абстрактного множества. Часто оказывается целесообразным считать их подмножествами некоторого универсального множества; элементы последнего принято называть игроками, а подмножества игроков, которые являются действующими сторонами в конфликте, - коалициями действия (различные коалиции действия могут пересекаться и даже содержаться одна в другой). Множество всех коалиций действия в конфликте далее будет обозначаться через Âd.
Каждая из коалиций действия К принимает некоторое решение из некоторого множества sk доступных для нее решений. Элементы множества sk называются стратегиями коалиции К.
Выбор каждой из коалиций действия некоторой стратегии определяет то, что называется исходом конфликта. При этом не обязательно, чтобы этот исход понимался как однозначно определенное детерминированное явление.
Допустимо, чтобы тот или иной из этих исходов был множеством физических явлений или же случайным явлением, т.е. множеством явлений с вероятностной мерой на нем. Кроме того, некоторые комбинации выбранных коалициями действия стратегий могут оказаться несовместимыми и потому неосуществимыми. В этом случае принято считать, что конфликт не состоялся. (В применении к играм (конфликты) это может выражаться в появлении некоторой помехи, прервавшей игру (конфликты) без возможности ее продолжения).
Все исходы конфликта называются ситуациями. Из сказанного выше следует, что ситуации составляют некоторое множество S, являющееся подмножеством множества всех комбинаций стратегий коалиций действия, т.е. декартова произведения множеств стратегий.
По поводу заинтересованных в исходах конфликта сторон можно повторить почти все, сказанное в связи с коалициями действия. Их называют коалициями интересов, и они считаются элементами некоторого абстрактного множества, которое далее будет обозначаться через Âи. Коалиции интересов суть подмножества того же множества игроков, что и коалиции действия.