Расчет и конструирование газоразрядной индикаторной панели переменного тока

Структурная схема дана на рисунке 2.2. Через блоки адресации 1 (по оси Y) и 4 (по оси Х) от блока 5 на все ячейки индикаторного поля 2 поступает поддерживающее напряжение, обеспечивающее работу ячеек панели в бистабильном режиме. Кроме того, блоки адресации обеспечивают формирование на выбранных электродах импульсов записи или стирания. Управление блоками адресации осуществляется информационной

системой I, вырабатывающей коды координат, подаваемые на блоки 1 и 4., и код команды управления, подаваемый на синхронизатор 6. После прохождения команды, синхронизатор выдает на информационную систему сигнал, разрешающий смену информации. Кроме того, синхронизатор задает временную программу работы генератора поддерживающего напряжения 5 и генератора питания рамки 3. Блок адресации состоит из двух ступеней: дешифратора входного адреса и блока согласования цифровой части схемы с индикатором. В зависимости от способа сложения на электродах панели поддерживающего и управляющего напряжений различают блоки согласования последовательного и параллельного типа. А по типу связи – трансформаторные, резисторно-конденсаторные, диодно-резисторные, транзисторные (наиболее часто используемые блоки).

Управление яркостью PDP

Интересная технологическая особенность плазменной ячейки - принципиальная невозможность плавной регулировки яркости свечения пикселя. Все дело в том, что плазменный разряд либо есть, либо его нет, в то время как управлять интенсивностью потока нельзя. И здесь на помощь приходит методика импульсно-кодовой модуляции (ИКМ). Ее суть состоит в следующем.

Управление яркостью характеризуется числом градаций яркости (полутонов) на каждый из цветов. Для современных дисплеев стандартом de facto стало 256 градаций на цвет, что соответствует 16.777.216 цветовых оттенков.

Из нескольких возможных путей управления яркостью (по току, длительности, числу импульсов) в PDP получило распространение управление яркостью по числу импульсов. В простейшем случае такого управления кадр изображения с периодом Tk разбивается на N субкадров одинаковой длительности, число которых определяется выражением:

N = Tk/nTс

где n - число строк в панели, Tc - длительность строки. Для характерных значений Tk = 16 мс, n = 480, Tc = 3 мкс, получим N = 11. Так как этого количества явно недостаточно для получения качественного изображения, то во всех современных PDP для управления яркостью используется эффект памяти. В этом случае кадр изображения разбивается на 8 субкадров с различной длительностью поддержки, соответствующим 8 битовым плоскостям, как это показано на рис. 2.3

Рис. 2.3 Диаграмма управления яркостью PDP

Длительность периода записи равна 0,003х480 = 1,44 мс, а длительность поддержки меняется от 0,016 до 2,048 мс. Суммарная длительность кадра составляет около 16 мс.

2. Выбор конструкции ячейки

Рис. 3.1

А. Ячейка ГИП постоянного тока (DC PDP)

Проблема в такой конструкции заключается в ионной бомбардировке слоя люминофора, который из-за этого довольно быстро выгорает.

Б. Ячейка ГИП переменного тока (AC PDP) с поверхностным разрядом.

Принципиальная особенность этого варианта заключена в размещении дисплейных электродов на одной подложке. Ионные потоки, связывающие электроды, не достигают противоположной подложки с люминофорным покрытием и поэтому не разрушают его. В конструкции с поверхностным разрядом люминофор наносится непосредственно на стеклянную пластину. Нижние стеклянные пластины с внутренней стороны покрыты слоем проводника и диэлектрика (объемный разряд) или двумя слоями проводника и диэлектрика (поверхностный разряд). Назначение элементов описанных конструкций было описано в принципе работы, комментариев требует лишь присутствие слоя люминофора. Переход к поверхностному разряду существенно продлил время жизни люминофора, но не снял проблему, поскольку бомбардировка люминофора ионами ослабла, но не исчезла полностью

В. Ячейка с трехэлектродной структурой

Окончательное решение было найдено в трехэлектродной структуре, которая была впервые создана в 1986 г. Третий электрод - адресный. Именно адресные электроды создают штриховую электродную систему, ортогональную штрихам разрядных электродов. На разрядные электроды постоянно подается напряжение, достаточное для поддержания разряда, но меньше напряжения зажигания. На адресные электроды подаются импульсы, размах которых достаточно велик, чтобы зажечь разряд. Коммутационная система телевизора с поэлементной тактовой частотой переключает потенциалы, подаваемые на адресные электроды, и со строчной - на электроды разряда При этом разность потенциалов между парой разрядных электродов поддерживается постоянной (см. принцип работы). Осталась проблема более эффективного использования излучения люминофора.

Г. «Перевернутая» ячейка с трехэлектродной структурой.

Атомы люминофора испускают фотоны в произвольном направлении. По условию задачи требуется, чтобы фотоны испускались преимущественно в сторону зрителя. По этой причине и было решено "перевернуть" ячейку, как показано на рис. г. Адресный электрод вместе с основной функцией проводника выполняет и вторую - зеркала, отражающего половину света, излучаемого люминофором, в сторону зрителя. Разрядные электроды приобрели выступы, более компактно локализующие разряд.

3. Расчет габаритов элементарной ячейки. Выбор газового наполнения

В связи с выше перечисленными фактами, а также опираясь на исследование [3] было решено взять за основу ячейку типа «Г», изображенную на рисунке 3.1.

Исходные данные – разрешение 853x480 (16:9), диагональ 32” (=81.28 см)

Учитывая, что H=3*d (h принимаем = h’), найдем шаг пикселя H=0,95 мм, и межэлектродное расстояние d=0.32мм

Выберем газовое наполнение и давление газа. Согласно [4] для ГИП переменного тока при давлении около 200 мм рт. ст. для снижения напряжения пробоя целесообразно использовать смеси с величиной коэффициента А порядка 1 (1/(мм*мм рт.ст.). Из экспериментальных работ Пожарского В.А., Евдокимова В.П. известно, что такими смесями являются пеннинговские смеси (напряжение зажигания для смеси ниже, чем для каждого из газов по отдельности) типа Ne+1%Xe, He+1%Xe, He+1%Ar и другие. Исследование же [3] показало, что в смеси He-Ne-Xe, при оптимальном содержании Xe около 5% при примерно одинаковых уровнях рабочих напряжений, значения яркости и световой эффективности более чем в 2 раза превышает получаемые для смеси Ne+1%Xe. На рисунке 3.4 показан график зависимости световой эффективности от давления для указанных выше газов. Кривая 1 соответствует смеси Ne+1%Xe, кривая 2 соответствует He-Ne-Хe

Рис. 3.4

Учитывая приведенные выше факторы, выбираем газовое наполнение – Ne-He-Xe – c содержанием Хe около 5%. Задаемся давлением – 200 мм.рт.ст. Для такой смеси коэффициент А=2. Кроме того При переходе в нейтральное состояние возбужденные атомы ксенона излучают УФ с длиной волны 190 нм [7] – т.к. давление достаточно высоко который возбуждает фотолюминофор, расположенный в ячейке. Длина газовой кюветы D находится из кривой Пашена – рис 3.5. [4] и равна 103.1 мкм.

Страница:  1  2  3  4 


Другие рефераты на тему «Коммуникации, связь и радиоэлектроника»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2025 - www.refsru.com - рефераты, курсовые и дипломные работы