Зонная модель твердого тела. Уравнение Шредингера для кристалла

U(r)=Ua+δU(r) δU(r)<<Ua (11)

где Ua - потенциальная энергия электрона в изолированном атоме.

Она является периодической функцией с периодом равным постоянной решетки; δU(2) поправочный член, учитывающий влияние на эту энергию соседних узлов решетки. Волновые функции электронов, обладающих различной энергией, имеют различный характер лока

лизации в объеме кристалла. Волновые функции внутренних электронов на незначительном расстоянии от ядер обращаются практически в ноль и для них пригодна формула (I I). Это будет приближение сильной связи. Для внешних валентных электронов лучше подходит приближение слабо связанных электронов в котором используется формула (I0).

Превращение энергетических уровней свободных атомов в энергетические зоны при образовании кристалла.

Взаимодействие атомов при образовании твердого тела приводит к расширению энергетических уровней атомов и превращению их в кристалле в энергетические зоны.

В атомах время жизни электрона в возбужденном состоянии τ = 10-8c

Вспомним принцип неопределенности для энергии

∆E ∆t ≥ ħ

∆t ≈ τ

тогда

∆E ≈ ħ / τ ≈ 10-7 эВ (ħ = 10-15 эВс)

Такова естественная ширина спектральных линий, испускаемых атомами.

В кристалле все электроны благодаря туннельному эффекту имеют возможность переходить от атома к атому. В результате уменьшается степень локализации электронов на определенных атомах, что изменяет значение неопределенностей их энергий, т.е. приводит к размытию уровней энергии и превращению их а полосы или зоны.

Так как глубина потенциального поля не играет принципиальной роли, можно заменить потенциальный рельеф кристалла рельефом с конечной глубиной. Кроме этого непрямоугольные барьеры в модели кристалла удобно заменить прямоугольными. Такую модель потенциального рельефа называют моделью Кронинга-Пенни.

Мы уже знаем как определяется прозрачность такого барьера:

D = D0 e-4π/h

Если ширина потенциальной ямы равна α, а скорость движения электрона равна υ, то за 1 секунду электрон подойдет к барьеру υ/α раз.

ν = υ/α D - дает частоту перехода электрона в соседний атом

ν = υ/α D0 e-4π/h

Величина τ обратная ν выражает среднее время пребывания электрона у определенного атома

τ = 1/ ν ≈ 1/ υ/α D0 e-4π/h

так как α ≈ 10-8 см; υ ≈ 108 см/с; D0 ≈ 1; υ/α ≈ 1016с-1

Для изолированных атомов d ≥ 30Å (среднее расстояние между молекулами газа при нормальных условиях). U-E – энергия ионизации атома. Для Na

U-E = 10 эВ. Найдем τ в этом случае:

τ ≈ 1020лет; ν ≈ 10-27с-1

В кристалле b ≈ 1Å, тогда ν ≈ 1015с-1 ; τ ≈ 10-20 с

При такой частоте перехода валентных электронов от атома к атому теряет, очевидно, смысл говорить о принадлежности их определенным атомам.

Таким образом туннельный эффект в кристалле доводит среднее время жизни валентного электрона в определенном узле решетки до τ ≈ 10-15с. В соответствии с принципом неопределенности, неопределенность в значении энергии таких электронов равна:

∆E ≈ 10-12эрг ≈ 1эВ

Это означает, что энергетический уровень валентных электронов, имеющий в изолированном атоме ширину 10-7эВ превращается в кристалле в энергетическую зону шириной порядка единиц электроновольт.

Для электронов внутренних оболочек натрия картина изменяется. Например, для электронов 1s (U-E ≈ 1000 эВ, d ≈ 3Å в результате ν ≈ 10-27 с-1; τ ≈ 1020лет) энергетические уровни этих атомов в кристалле такие же узкие, как и в отдельном атоме. По мере перехода к валентным электронам высота и ширина потенциального барьера уменьшается, вероятность туннельного перехода электронов увеличивается, вследствие чего растет ширина энергетических зон.

На рисунке снизу приведены урони изолированного атома натрия, слева – образование

Зон, обусловленное расширением уровней при уменьшении расстояния между атомами. Электрические свойства твердых тел в основном определяют особенностями образования энергетических зон при сближении атомов и образовании кристалла.

Рис. Расширение энергетических уровней при сближении атомов Na.

ЛИТЕРАТУРА

1. Мирошников М.М. Теоретические основы оптико-электронных приборов: учебное пособие для приборостроительных вузов. -- 2-е издание, перераб. и доп.—Спб.: Машиностроение,2003 -- 696 с.

2. Порфирьев Л.Ф. Теория оптико-электронных приборов и систем: учебное пособие.— Спб.: Машиностроение,2003 -- 272 с.

3. Кноль М., Эйхмейер И. Техническая электроника, т. 1. Физические основы электроники. Вакуумная техника.—М.: Энергия, 2001.

Страница:  1  2  3 


Другие рефераты на тему «Коммуникации, связь и радиоэлектроника»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы