Закон Харди-Вайнберга и его ограничения
Термины «микроэволюция» и «макроэволюция» ввел в биологию русский генетик Ю.А. Филиппченко в 1927 г. Эти два процесса едины, макроэволюция является продолжением микроэволюции. Главная заслуга в разработке популяционной генетики, а особенно ее теоретического и математического аспектов, в раннем периоде (1920–1940 гг.) принадлежит С.С. Четверикову, С. Райту, Р. Фишеру, Дж. Холдейну, А.С. Серебров
скому и Н.П. Дубинину.
На стыке классического дарвинизма и генетики родилось целое направление – популяционная генетика, занимающаяся изучением эволюционных процессов в популяциях.
В 20-е гг. XX в. между генетикой и эволюционной теорией Дарвина возникло разногласие. Высказывались мнения о том, что генетика отменила якобы устаревший дарвинизм.
Наши отечественные ученые первыми поняли значение сравнительно мелких объединений особей, на которые распадается население любого вида, – популяций.
В 1926 г. С.С. Четвериков (1880–1959) написал свою главную работу «О некоторых моментах эволюционного процесса с точки зрения современной генетики». Четвериков доказал, что расширение знаний о природе наследственности, наоборот, укрепило и развило дарвинизм. Выход в свет его работы дал начало синтетической теории эволюции, объединившей генетику и учение Дарвина, – эволюционной генетике. Популяционная генетика в первую очередь занимается выяснением механизмов микроэволюции.
Главное начало, объединяющее особей в одну популяцию, – имеющаяся у них возможность свободно скрещиваться между собой – панмиксия (от греч. пан – все и миксис – смешивание). Панмиксия - свободное, основанное на случайном, равновероятном сочетании всех типов гамет, скрещивание разнополых особей и перекрестно оплодотворяющихся организмов, в пределах популяции или другой внутривидовой группы организмов. Полная панмиксия возможна лишь в идеальных, бесконечно больших популяциях. Возможность скрещивания, доступность партнера внутри популяции при этом обязательно должна быть выше, чем возможность встретиться двум особям противоположного пола из разных популяций. Панмиксия обеспечивает возможность постоянного обмена наследственным материалом. В результате формируется единый генофонд популяции. Генофонд (от греч. генос – рождение и лат. фонд – основание, запас) – совокупность генов, которые имеются у особей данной популяции (термин введен в биологию в 1928 г. А.С. Серебровским).
1.2 Частота (концентрация) генов и генотипов
Важнейшая особенность единого генофонда – его внутренняя неоднородность. Генофонд (совокупность генов данной популяции, группы особей или вида) популяции может быть описан либо частотами генов, либо частотами генотипов.
Ген – это наследственный фактор, функционально неделимая единица наследственности. Участок молекулы ДНК (у некоторых вирусов - РНК), который кодирует первичную структуру полипептида (белка) или молекулу транспортной или рибосомной РНК, либо взаимодействует с регуляторным белком.
Ген – (греч. Genos – происхождение) – характеристика врожденных свойств, единица наследственного материала (генетической информации). Участок молекулы ДНК (у высших организмов) и РНК (у вирусов и фагов), содержащий информацию о первичной структуре одного белка. Совокупность всех генов организма составляет генотип. Каждый ген ответствен за синтез определенного белка (полипептидной цепи). Контролируя его образование, ген управляет всеми химическими реакциями организма, а потому определяет его признаки. На ДНК-матрице гена синтезируется информационная РНК, которая затем сама служит матрицей для синтеза белка. Следовательно, ген служит основой системы ДНК - РНК - белок. [5]
Важнейшее свойство гена - сочетание их высокой устойчивости (неизменяемости в ряду поколений) со способностью к наследуемым изменениям - мутациям, служащим основой изменчивости организмов, дающей материал для естественного отбора. Дискретное наследование задатков было открыто в 1865 году австрийским естествоиспытателем г. Менделем (1822 - 1884). В 1909 г. Датский генетик Иогансен (1857 - 1927) назвал их генами.
Предположим, что нас интересует какой-либо ген, локализованный в аутосоме, например ген А, имеющий два аллеля – А и а. При этом аллелизм – это парность гомологичных генов, определяющих разные фенотипические признаки у диплоидных организмов. А аллель – это одно из возможных структурных состояний гена. В определенном локусе хромосомы представлен только один из аллелей. У диплоидных организмов ген бывает представлен парой аллелей, располагающихся в гомологичных хромосомах. Потенциальное число аллелей в популяции неограниченно.
Предположим, что в популяции имеется N особей, различающихся по этой паре аллелей. В популяции встречаются три возможных генотипа – АА; Аа; аа. Генотип – это совокупность аллелей клетки или организма, генетическая конституция. Генотип является характеристикой индивида. Фенотип – совокупность всех признаков особи в каждый конкретный момент ее жизни. Фенотип формируется при участии генотипа под влиянием условий среды. Фенотип есть частный случай реализации генотипа в конкретных условиях.
Фенотип (греч. фено – являю + тип) – это совокупность всех внутренних и внешних признаков и свойств особи, сформировавшихся на базе генотипа в процессе ее индивидуального развития (онтогенеза); служит одним из вариантов нормы реакции организма на действие внешних условий. При относительно одном и том же генотипе (абсолютного идентичного генотипа, за исключением однояйцевых близнецов, быть не может) в определенных пределах возможны бесчисленные варианты фенотипов (например, множество пород собак).
2. Закон Харди-Вайнберга
2.1 Предпосылки закона Харди-Вайнберга
Популяция является элементарной единицей эволюции, так как она обладает относительной самостоятельностью и ее генофонд может изменяться. Закономерности наследования различны в популяциях разных типов. В популяциях самоопыляющихся растений отбор происходит между чистыми линиями. В популяциях раздельнополых животных и перекрестноопыляемых растений закономерности наследования подчиняются закону Харди-Вайнберга.
В научном мире нечасто случается, чтобы разные ученые независимо друг от друга наткнулись на одну и ту же закономерность, но все же таких примеров достаточно, чтобы заставить нас поверить в существование «духа времени». К их числу относится и закон Харди—Вайнберга (известный также как закон генетического равновесия) — одна из основ популяционной генетики. Закон описывает распределение генов в популяции.
Представьте себе ген, имеющий два варианта — или, пользуясь научной терминологией, два аллеля. Например, это могут быть гены «низкорослости» и «высокорослости», как в случае менделевского гороха, или наличие или отсутствие предрасположенности к рождению двойни. Харди и Вайнберг показали, что при свободном скрещивании, отсутствии миграции особей и отсутствии мутаций относительная частота индивидуумов с каждым из этих аллелей будет оставаться в популяции постоянной из поколения в поколение. Другими словами, в популяции не будет дрейфа генов.
Другие рефераты на тему «Психология»:
Поиск рефератов
Последние рефераты раздела
- Взаимосвязь эмоционального интеллекта и агрессивности у студентов факультета психология
- Инженерия интимно-личностного общения и ее инструменты
- Я, Госпожа Удачи!
- Аналитическая психология Юнга
- Взаимодействие преподавателей и студентов в вузе
- Взаимосвязь эмоционального интеллекта и тревоги у студентов
- Влияние психологической среды ВУЗа