Закон Харди-Вайнберга и его ограничения
4. Частоты зигот во втором поколении. Приведенная выше система свободного скрещивания даёт следующие результаты:
0.49 АА; 0.21 + 0.21 = 0.42 Аа; 0.09 аа.
Считается, что все зиготы обладают одинаковой жизнеспособностью; следовательно, приведённые цифры дают ожидаемые равновесные частоты генотипов во втором поколении.
Можно заметить, что данная популяция не находилась в равновесии в
отношении частот генотипов в первом поколении, но достигла равновесного состояния в результате свободного скрещивания всего лишь в одном поколении;
5. Частоты аллелей во втором поколении. Генофонд второго поколения, очевидно, будет содержать два аллеля со следующими частотами:
А = ( 0.49 + 0.49 + 0.42) \ 2 = 0.70, а = (0.42 + 0.09 + 0.09) \ 2 = 0.30.
Таким образом, частоты аллелей во втором поколении такие же, какими они были в первом поколении. [3]
Эффекты инбридинга. Инбридинг – это близкородственное скрещивание, скрещивание организмов, имеющих общего предка. При инбридинге повышается вероятность наличия у скрещиваемых организмов одних и тех же аллелей. В большой популяции при условии случайного скрещивания частоты генотипов быстро достигают равновесного состояния, которое сохраняется в дальнейшем. Нарушения случайности скрещивания вызывают отклонения частот генотипов от равновесия Харди — Вайнберга.
Допустим, что некая популяция в нулевом поколении состоит исключительно из гетерозигот Аа. Размножение происходит путем самооплодотворения. В первом поколении популяция будет иметь следующий состав: 25% АА, 50% Аа и 25% аа. В последующих поколениях сокращение класса гетерозигот будет продолжаться с равномерной скоростью. После самооплодотворения в семи поколениях (т. е. в 7-м инбредном поколении) популяция будет содержать почти 50% АА и почти 50% аа. [3]
3.3 Мутационный процесс
Организмы, обладающие удачными вариантами признаков, имеют большую вероятность по сравнению с другими организмами выжить и оставить потомство. Вследствие этого полезные вариации в ряду поколений будут накапливаться, а вредные или менее полезные вытесняться, элиминироваться. Это и называется процессом естественного отбора, который играет ведущую роль в определении направления и скорости эволюции.
Прямая взаимосвязь между степенью генетической изменчивости в популяции и скоростью эволюции под действием естественного отбора была доказана математическим путем Р. Фишером [1930] в его фундаментальной теореме естественного отбора. Фишер ввел понятие приспособленности и доказал, что скорость возрастания приспособленности популяции в любой момент времени равна генетической вариансе приспособленности в тот же момент времени. Однако прямые доказательства этого факта были получены лишь в конце 60-х годов ХХ столетия.
Мутационный процесс служит источником появления новых мутантных аллелей и перестроек генетического материала. Однако возрастание их частоты в популяции под действием мутационного давления происходит крайне медленно, даже в эволюционном масштабе. К тому же подавляющее большинство возникающих мутаций устраняются из популяции в течение немногих поколений уже в силу случайных причин. Неизбежность такого течения событий впервые обосновал Р. Фишер в 1930 году. Для человека и других многоклеточных показано, что мутации обычно возникают с частотой от 1 на 100 000 до 1 на 1 000 000 гамет. Новые мутанты, хотя и довольно редко, но постоянно появляются в природе, поскольку существует множество особей каждого вида и множество локусов в генотипе любого организма. Например, число особей того или иного вида насекомых обычно составляет около 100 млн. (108). Если предположить, что средняя мутабельность по одному локусу равна 1 мутации на 100 000 (10-5) гамет, то среднее число вновь возникающих в каждом поколении мутантов по этому локусу для данного вида насекомых составит . (Частота возникновения мутаций умножается на число особей и еще на два, так как любая особь представляет собой продукт слияния двух гамет.) В генотипе человека имеется около 100 000 (105) локусов. Предположим, что у человека темп мутирования такой же, как у дрозофилы; в этом случае вероятность того, что генотип каждого человека содержит новый аллель, отсутствовавший в генотипе его родителей, равна . Иными словами, каждый человек в среднем несет около двух новых мутаций.
Проделанные выше расчеты основаны на частотах возникновения мутаций, обладающих внешним проявлением. В целом по геному темп мутирования составляет не менее замен на одну нуклеотидную пару в год. У млекопитающих число нуклеотидных пар в диплоидном геноме составляет около . Следовательно, нуклеотидные замены у млекопитающих происходят с частотой не менее в год на диплоидный геном. Ясно, что мутационный процесс обладает колоссальными возможностями поставлять новый наследственный материал.
Важный шаг в генетике популяций был сделан в 1926 году С. С. Четвериковым. Исходя из закона Харди – Вайнберга, С. С. Четвериков доказал неизбежность генетической разнородности природных популяций при том, что новые мутации непрерывно появляются, но остаются обычно скрытыми (рецессивными), а в популяции идет свободное скрещивание.
Из расчетов Четверикова следовало, а впоследствии это было полностью подтверждено практикой, что даже редкие и вредные для особи мутантные гены будут надежно укрыты от очищающего действия естественного отбора в гетерозиготах (организмах со смешанной наследственностью) с доминирующими безвредными генами нормального дикого типа. Это значит, что даже вредная гетерозигота (организм с однородной наследственностью) мутация будет сохраняться в виде генетической «примеси» в течение ряда поколений. Мутация будет как бы поглощена популяцией, из-за чего за внешним однообразием особей одной популяции неизбежно скрывается их огромная генетическая разнородность. Четвериков это выразил так: «Вид, как губка, впитывает в себя гетерозиготные геновариации, сам оставаясь при этом все время внешне (фенотипически) однородным». Для жизни популяций эта особенность может иметь два разных следствия. В огромном большинстве случаев при изменении условий среды вид может реализовать свой «мобилизационный резерв» генетической изменчивости не только за счет новых наследственных изменений у каждой особи, но и благодаря «генетическому капиталу», доставшемуся от предков. Благодаря такому механизму наследования популяция приобретает пластичность, без чего невозможно обеспечить устойчивость приспособлений в меняющихся условиях среды. Однако изредка возможен и другой исход: редкие скрытые вредные мутации иногда могут встретиться у потомства совершенно здоровых родителей, приводя к появлению особей с наследственными заболеваниями. И это – тоже закономерное, неистребимое биологическое явление, своего рода жестокая плата популяции за поддержание своей наследственной неоднородности.
Другие рефераты на тему «Психология»:
- Личностные особенности подростков, склонных к табакокурению
- Гендерные аспекты волевых качеств младших школьников
- Человеческие потребности
- Эффективное восприятие реальности и комфортные взаимоотношения с реальностью людей активной жизненной позиции
- Анализ содержания стереотипов восприятия подростками взрослых
Поиск рефератов
Последние рефераты раздела
- Взаимосвязь эмоционального интеллекта и агрессивности у студентов факультета психология
- Инженерия интимно-личностного общения и ее инструменты
- Я, Госпожа Удачи!
- Аналитическая психология Юнга
- Взаимодействие преподавателей и студентов в вузе
- Взаимосвязь эмоционального интеллекта и тревоги у студентов
- Влияние психологической среды ВУЗа