Операции на графах

Находим множество вершин X результирующего графа.

X = X1ÇX2 = {x1, x2, x3}.

Составим матрицы смежности вершин вспомогательных графов G’1 и G’2.

     

x1

x2

x3

     

x1

x2

x3

   

x1

0

1

1

   

x1

0

0

0

A’1

=

x2

1

0

1

A’2

=

x2

1

0

1

   

x3

0

1

0

   

x3

1

0

0

Найдем матрицу смежности вершин A = A1 Ç A2

     

x1

x2

x3

   

x1

0

0

0

A’1ÇA’2

=

x2

1

0

1

   

x3

0

0

0

Полученная матрица смежности вершин A’1 Ç A’2 соответствует графу G1ÇG2, изображенному на рис.2.

Композиция графов

Пусть G1(X,E1) и G2(X,E2) — два графа с одним и тем же множеством вершин X. Композицией G1(G2) графов G1 и G2 называется граф с множеством вершин E, в котором существует дуга (xi,xj) тогда и только тогда, когда существует дуга (xi,xk), принадлежащая множеству E1, и дуга (xk,xj), принадлежащая множеству E2.

Рассмотрим выполнение операции композиции G1(G2) на графах, изображенных на рис.3. Для рассмотрения операции составим таблицу, в первом столбце которой указываются ребра (xi, xk), принадлежащие графу G1, во втором — ребра (xk, xj), принадлежащие графу G3, а в третьем — результирующее ребро (xi, xj) для графа G1(G2).

G1

G2

G1(G2)

(x1,x2)

(x2,x1)

(x2,x3)

(x1,x1)

(x1,x3)

(x1,x3)

(x3,x3)

(x1,x3)

(x2,x1)

(x1,x1)

(x1,x3)

(x2,x1)

(x2,x3)

Заметим, что дуга (x1,x3) результирующего графа в таблице встречается дважды. Однако, поскольку рассматриваются графы без параллельных ребер (дуг), то в множестве E результирующего графа дуга (x1,x3) учитывается только один раз, т.е. E = {(x1,x1), (x1,x3), (x2,x1), (x2,x3)}

На рис. 3 изображены графы G1 и G2 и их композиции G1(G2). На этом же рисунке изображен граф G2(G1). Рекомендуется самостоятельно построить граф G2(G1) и убедиться, что графы G1(G2) и G2(G1) не изоморфны.

Пусть А1 и A2 – матрицы смежности вершин графов G1(X,E1) и G(X,E2) соответственно. Рассмотрим матрицу A12 элементы aij которой вычисляется так:

n

aij = Úa1ikÙa2kj (1)

k=1

где a1ik и a2kj – элементы матрицы смежности вершин первого и второго графов соответственно. Элемент aij равен 1, если в результирующем графе G1(G2) существует дуга, исходящая из вершины xi и заходящая xj, и нулю – в противном случае.

Пример 3. Выполнить операцию композиции для графов, пред­ставленных на рис. 3.

Составим матрицы смежности вершин графов:

     

x1

x2

x3

     

x1

x2

x3

   

x1

0

1

1

   

x1

1

0

1

A1

=

x2

1

0

0

A2

=

x2

1

0

1

   

x3

0

0

0

   

x3

0

0

1

Страница:  1  2  3  4  5  6  7  8 


Другие рефераты на тему «Математика»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы