Математические уравнения и функции
Варивант №2
Задание 1
Дан треугольник ABC, где А(-3,2), В(3,-1), С(0,3). Найти:
1. Длину стороны АВ;
2. Внутренний угол А с точностью до градуса;
3. Уравнение и длину высоты, опущенной из вершины С;
4. Точку пересечения высот;
5. Уравнение медианы, опущенной из вершины С;
6. Систему неравенств, определяющих треугольник АВС;
7. Сделать
чертеж;
Решение:
1. Найдем координаты вектора АВ:
Длина стороны АВ равна:
2. Угол А будем искать как угол между векторами АВ и АС(-3,1)
Тогда
3. Прямая СК перпендикулярна АВ проходит через точку С(0,3) и имеет нормалью вектор .
По формуле получим уравнение высоты:
Сокращаем на 3 получим уравнение высоты:
4. Координаты основания медианы будут:
;
Уравнение медианы найдем, пользуясь данной формулой, как уранение прямой, проходящей через 2 точки: С и М
Так как знаменатель левой части равен нулю, то уравнение медианы будет иметь такой вид х=0
5. Известно что высоты треугольника пересекаются в одной точке Р. Уравнение высоты СК найдено, выведем аналогично высоту BD проходящую через точку В перпендикулярно вектору
Координаты точки Р найдем как решение системы уравнений:
х=11 у=23
6. Длину высоты hc будем ее искать как расстояние от точки С до прямой АВ. Эта прямая проходит через точку А и имеет направляющий вектор .
Теперь воспользовавшись формулой
Подставляя в нее координаты точки С(0,3)
Задание 2
Даны векторы Доказать, что образуют базис четырехмерного пространства, и найти координаты вектора «в» в этом базисе.
Решение:
1. Докажем, что подсистема линейно независима:
Из четвертого уравнения имеем , что , тогда из первого, второго и третьего следует, что . Линейная независимость доказана.
Докажем, что векторы можно представить в виде линейных комбинации векторов .
Очевидно,
Найдем представление через .
Из четвертого уравнения находим и подставляем в первые три
Получили , что данная система векторов не может называться базисом!
Задание 3
Найти производные функций:
Задание 4.
Исследовать функцию и построить ее график
1. Область определения:
, то есть
2. Кривая имеет вертикальную ассимптоту х=-1, так как
Находим наклонные асимптоты. а то означает, что есть вертикальная асимптота у=0.
3. Функция общего вида, так как и
4. Функция периодичностью не обладает
5. Находим производную функции
Получаем 3 критические точки х=-1 х=1, и х=5.
Результаты исследования на монотонность и экстремумы оформляется в виде таблицы
х |
|
|
1 |
|
5 |
|
y’ |
- |
- |
0 |
+ |
0 |
- |
y |
убывает |
убывыает |
0 min |
возрастает |
0,074 |
убывает |
Другие рефераты на тему «Математика»:
- Методика формирования умений решать тригонометрические уравнения и неравенства в курсе алгебры и начал анализа
- Решение матричных уравнений. Базисный минор. Ранг. Действия над матрицами
- Нестандартные методы решения задач по математике
- Функциональные представления ограниченных дистрибутивных решеток
- Доказательство великой теоремы Ферма
Поиск рефератов
Последние рефераты раздела
- Анализ надёжности и резервирование технической системы
- Алгоритм решения Диофантовых уравнений
- Алгебраическое доказательство теоремы Пифагора
- Алгоритм муравья
- Векторная алгебра и аналитическая геометрия
- Зарождение и создание теории действительного числа
- Вероятностные процессы и математическая статистика в автоматизированных системах