Асимптоты (определение, виды, правила нахождения)

Тогда вертикальные асимптоты находятся как корни уравнения

10

3.3 Наклонная асимптота

(рис.5)

Пусть уравнение асимптот есть y = ax + b. Значение функции при аргументе х есть d = ax + b – f (x). Неограниченное приближение к асимпто

те означает, что величина d = ax + b – f (x) стремится к 0 при х ® ± ¥

lim [f (x) – (ax + b)] = 0.

x ® ¥

Если эта величина стремится к нулю, то тем более стремится к нулю величина

Но тогда мы имеем

и так как последний предел равен нулю, то

Зная а, можно найти и b из исходного соотношения

Тем самым параметры асимптоты полностью определяются.

Пример

то есть асимптота при x ® +¥ имеет уравнение y=x.

11

Аналогично можно показать, что при x ® - ¥ асимптота имеет вид y = - x.

Сам график функции выглядит так (рис.6)

(рис.6)

12

Использованная литература

1. Р.Б. Райхмист «Графики функций», Москва, 1991г.

2. Л.Д. Кудрявцев «Курс математического анализа» т.1, Москва 1981

3. Лекции по математике

Страница:  1  2 


Другие рефераты на тему «Математика»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы