Математическая теория информации

1. Количество информации, и ее мера

На вход системы передачи информации (СПИ) от источника информации подается совокупность сообщений, выбранных из ансамбля сообщений (рис. 1).

Помехи

x1 y1

x2 y2

… …

xn yn

Рис. 1. Система передачи информ

ации

Ансамбль сообщений – множество возможных сообщений с их вероятностными характеристиками – {Х, р(х)}. При этом: Х={х1, х2,…, хm} – множество возможных сообщений источника; i = 1, 2,…, m, где m – объем алфавита; p(xi) – вероятности появления сообщений, причем p(xi) ³ 0 и поскольку вероятности сообщений представляют собой полную группу событий, то их суммарная вероятность равна единице

.

Каждое сообщение несет в себе определенное количество информации. Определим количество информации, содержащееся в сообщении xi, выбранном из ансамбля сообщений источника {Х, р(х)}. Одним из параметров, характеризующих данное сообщение, является вероятность его появления – p(xi), поэтому естественно предположить, что количество информации I(xi) в сообщении xi является функцией p(xi). Вероятность появления двух независимых сообщений x1 и x2 равна произведению вероятностей p(x1, x2) = p(x1).p(x2), а содержащаяся в них информация должна обладать свойством аддитивности, т.е.:

I(x1, x2) = I(x1)+I(x2). (1)

Поэтому для оценки количества информации предложена логарифмическая мера:

. (2)

При этом наибольшее количество информации содержат наименее вероятные сообщения, а количество информации в сообщении о достоверном событии равно нулю. Т. к. все логарифмы пропорциональны, то выбор основания определяет единицу информации: logax = logbx/logba.

В зависимости от основания логарифма используют следующие единицы информации:

2 – [бит] (bynary digit – двоичная единица), используется при анализе ин-формационных процессов в ЭВМ и др. устройствах, функционирующих на основе двоичной системы счисления;

e – [нит] (natural digit – натуральная единица), используется в математических методах теории связи;

10 – [дит] (decimal digit – десятичная единица), используется при анализе процессов в приборах работающих с десятичной системой счисления.

Битом (двоичной единицей информации) – называется количество информации, которое снимает неопределенность в отношении наступления одного из двух равновероятных, независимых событий.

Среднее количество информации для всей совокупности сообщений можно получить путем усреднения по всем событиям:

. (3)

Количество информации, в сообщении, состоящем из n не равновероятных его элементов равно (эта мера предложена в 1948 г. К. Шенноном):

. (4)

Для случая независимых равновероятных событий количество информации определяется (эта мера предложена в 1928 г. Р. Хартли):

. (5)

2. Свойства количества информации

1. Количество информации в сообщении обратно – пропорционально вероятности появления данного сообщения.

2. Свойство аддитивности – суммарное количество информации двух источников равно сумме информации источников.

3. Для события с одним исходом количество информации равно нулю.

4. Количество информации в дискретном сообщении растет в зависимости от увеличения объема алфавита – m.

Пример 1. Определить количество информации в сообщении из 8 двоичных символов (n = 8, m = 2), если вероятности равны: pi0 = pi1 = 1/2.

Количество информации равно:

I = n log m = 8 log2 2 = 8 бит.

Пример 2. Определить количество информации в сообщении из 8 двоичных символов (n = 8, m = 2), если вероятности равны:

pi0 = 3/4; pi1 = 1/4.

Количество информации равно:

3. Энтропия информации

Энтропия – содержательность, мера неопределенности информации.

Энтропия – математическое ожидание H(x) случайной величины I(x) определенной на ансамбле {Х, р(х)}, т.е. она характеризует среднее значение количества информации, приходящееся на один символ.

. (6)

Определим максимальное значение энтропии Hmax(x). Воспользуемся методом неопределенного множителя Лагранжа -l для отыскания условного экстремума функции [6]. Находим вспомогательную функцию:

(7)

Представим вспомогательную функцию F в виде:

. (8)

Найдем максимум этой функции

т. к.

.

Как видно из выражения, величина вероятности pi не зависит от i, а это может быть в случае, если все pi равны, т.е. p1 =p2 =…=pm =1/m.

При этом выражение для энтропии равновероятных, независимых элементов равно:

. (9)

Найдем энтропию системы двух альтернативных событий с вероятностями p1 и p2. Энтропия равна

4. Свойства энтропии сообщений

1. Энтропия есть величина вещественная, ограниченная, не отрицательная, непрерывная на интервале 0 £ p £ 1.

2. Энтропия максимальна для равновероятных событий.

3. Энтропия для детерминированных событий равна нулю.

4. Энтропия системы двух альтернативных событий изменяется от 0 до 1.

Энтропия численно совпадает со средним количеством информации но принципиально различны, так как:

H(x) – выражает среднюю неопределенность состояния источника и является его объективной характеристикой, она может быть вычислена априорно, т.е. до получения сообщения при наличии статистики сообщений.

I(x) – определяется апостериорно, т.е. после получения сообщения. С получением информации о состоянии системы энтропия снижается.

5. Избыточность сообщений

Одной из информационных характеристик источника дискретных сообщений является избыточность, которая определяет, какая доля максимально-возможной энтропии не используется источником

, (10)

где ? – коэффициент сжатия.

Избыточность приводит к увеличению времени передачи сообщений, уменьшению скорости передачи информации, излишней загрузки канала, вместе с тем, избыточность необходима для обеспечения достоверности передаваемых данных, т.е. надежности СПД, повышения помехоустойчивости. При этом, применяя специальные коды, использующие избыточность в передаваемых сообщениях, можно обнаружить и исправить ошибки.

Страница:  1  2 


Другие рефераты на тему «Программирование, компьютеры и кибернетика»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2025 - www.refsru.com - рефераты, курсовые и дипломные работы