Коды Фибоначи. Коды Грея

Таблица 3

Число

Дв. Код

Код Грея

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111

0000

0001

0011

0010

0110

0111

0101

0100

1100

1101

1111

1110

1010

1011

1001

1000

Схема кодера Грея приведена на рис. 2. Как видно из кодер Грея реализуется с помощью регистра RG, сдвигового регистра SRG и сумматора по модулю 2 SM2.

Правила перехода из кода Грея в двоичный код. Существует несколько способов перехода.

1. Используется следующий алгоритм:

an-1 = bn-1;

ai = ai+1 bi .

где an-1 - значение старшего разряда двоичного числа.

Пример 1. Дана запись числа кодом Грея bi = 10101 ® b4 b3 b2 b1 b0 получить двоичную запись. Используя приведенные выше формулы, получим

a4 = b4 = 1 ;

a3 = a4 b3 =1 0 = 1;

a2 = a3 b2 =1 1 = 0;

a1 = a2 b1 =0 0 = 0;

a0 = a1 b0 =0 1 = 1;

ai = a4 a3 a2 a1 a0 = 11001

2. Переход осуществляется по алгоритму ai = - т. е. как сумма по модулю 2 всех предыдущих значений

Пример 2. Дана запись числа кодом Грея bi = 11001. При этом двоичная запись равна ai = 10101;

Правила перехода из двоичного кода и кода Грея к десятичной записи

Для двоичного кода:

Для кода Грея:

для нечетных “1” знак “+”, для четных “1” знак “-”.

Пример 3. Дана запись числа двоичным кодом ai = .

При этом десятичная запись равна

a10 = 1×25 + 1×24 + 1×22 +1×21 = 32+16+4+2 = 54.

Пример 4. Дана запись числа двоичным кодом ai =110110. Получить код Грея и преобразовать его в десятичную запись.

Получим код Грея

ai = 1 0 1 1 0

1 1 0 1 1 0

bi = 1 0 1 1 0 1.

Получим десятичную запись

b10 = 1×(26-1)- 1×(24-1)+ 1×(23-1)- 1×(21 -1) = 63-15+7-1=54.

Достоинство кода Грея: Простота перевода в двоичный код и обратно, а также к десятичной записи.

Применение кода Грея: Код Грея, чаще всего, используется для надежного перехода от аналогового представления информации к цифровой и обратно, т. е. в аналого-цифровых преобразователях (АЦП).

Список Литературы

1. Вернер М. Основы кодирования. — М.: Техносфера, 2004.

2. Зюко А.Г. , Кловский Д.Д., Назаров М.В., Финк Л.М. Теория передачи сигналов. М: Радио и связь, 2001 г. –368 с.

3. Кнут Дональд, Грэхем Роналд, Паташник Орен Конкретная математика. Основание информатики — М.: Мир; Бином. Лаборатория знаний, 2006. — С. 703.

4. Лидовский В.И. Теория информации. - М., «Высшая школа», 2002. – 120с.

5. Метрология и радиоизмерения в телекоммуникационных системах. Учебник для ВУЗов. / В.И.Нефедов, В.И. Халкин, Е.В. Федоров и др. – М.: Высшая школа, 2001 г. – 383с.

6. Рудаков А. Н. Числа Фибоначчи и простота числа 2127-1 // Математическое Просвещение, третья серия. — 2000. — Т. 4.

7. Стахов А.П. Коды золотой пропорции. –М.: Радио и Связь, 1984.

8. Цапенко М.П. Измерительные информационные системы. - . – М.: Энергоатом издат, 2005. - 440с.

Страница:  1  2  3 


Другие рефераты на тему «Программирование, компьютеры и кибернетика»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы