Коды Фибоначи. Коды Грея
1. КОДЫ ФИБОНАЧЧИ
1.1 ЗОЛОТЫЕ ПРОПОРЦИИ
В математике существует большое количество иррациональных (несоизмеримых) чисел, т. е. обозначающих длину отрезка несоизмеримого с единицей масштаба. Ряд из них широко используется как в математике, так и в др. областях.
Например: Число p = 2pR/D=3,14159… , которое представляет отношение длины окруж
ности к ее диаметру. Число e = 2,71828… , при этом . Логарифмы с основанием e удобны для математических расчетов. Число Ö2 =1,44… , которое представляет отношение диагонали к стороне квадрата и ряд других чисел.
Особое иррациональное число a = (1+Ö5)/2 = 1,61803, которое называется золотая пропорция или золотое сечение и является результатом решения задачи деления отрезка в крайнем и среднем отношении (рис. 1)
A C B
о o o
Рис. 1 Деление отрезка
Если задан отрезок AB то необходимо найти такую точку C, чтобы выполнялось условие AB/CB = CB/AC.
Обозначим: x = CB/AC; (CB+AC)/CB = 1+1/x = x.
При этом x2–x–1 = 0. Корни этого уравнения равны: x1,2=(1±Ö5)/2.
Положительный корень называется золотой пропорцией , а точка C - золотым сечением. Золотая пропорция обладает рядом уникальных свойств.
Пропорция 1,61 . использовалась в архитектуре, художественных произведениях, музыке с античных времен. С этим числом связан ореол мистики, таинственности, божества и т.д.
В последнее десятилетие эта пропорция нашла свое применение в ЭВМ, АЦП-ЦАП, измерениях и т. д.
1.2 ЧИСЛА ФИБОНАЧЧИ
С золотым сечением тесно связаны числа Фибоначчи открытые итальянским математиком Леонардо из Пизы (Фибоначчи) в XIII веке, которые вычислены по формуле:
(1)
Эти числа представляют ряд: 1, 1, 2, 3, 5, 8, 13, 21 .
Отношение соседних чисел Фибоначчи 1/1, 2/1, 3/2, 5/3, 8/5, 13/8, 21/13 . в пределе стремится к золотой пропорции
. (2)
Числа Фибоначчи обладают еще рядом полезных свойств. Например, остатки от деления чисел Фибоначчи на 2 образуют последовательность: 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, . и т. д.
Обобщенные числа Фибоначчи или p-числа Фибоначчи вычисляются по рекуррентной формуле:
(3)
Где p = 0, 1, 2, 3, … . При р = 0 число j0(n) совпадает с двоичными разрядами 2n (табл. 1) .
Таблица 1
n |
0 |
1 |
2 |
3 |
4 |
5 |
j0(n) |
1 |
2 |
4 |
8 |
16 |
32 |
При р = 1 число j0(n) совпадает с обычным рядом Фибоначчи:
1, 1, 2, 3, 5, 8, .
При р = число j0(n) = 1 для любого n ³ 0 равно:
1, 1, 1, 1, 1, 1, 1, 1, .
1.3 КОДЫ ФИБОНАЧЧИ
Любое натуральное число N можно представить с помощью p-чисел Фибоначчи
(4)
где: ai Î{0, 1} - двоичная цифра i-го разряда; jp(i) - вес i-го разряда;
Любое натуральное число N можно представить также следующим способом:
(5)
Такое представление чисел N называется p-кодом Фибоначчи. Каждому p Î{0, 1, 2, …, ¥} соответствует свой код, т. е. их число бесконечно.
При p = 0 p -код Фибоначчи совпадает с двоичным кодом.
Для 1-кода Фибоначчи кодовые комбинации имеют вид:
Таблица 2
N |
KK |
Вес порядка | |||||
5 |
4 |
3 |
2 |
1 | |||
0 |
A0 |
0 |
0 |
0 |
0 |
0 | |
1 |
A1 |
0 |
0 |
0 |
0 |
1 | |
1 |
A2 |
0 |
0 |
0 |
1 |
0 | |
2 |
A3 |
0 |
0 |
0 |
1 |
1 | |
2 |
A4 |
0 |
0 |
1 |
0 |
0 | |
3 |
A5 |
0 |
0 |
1 |
0 |
1 | |
3 |
A6 |
0 |
0 |
1 |
1 |
0 | |
4 |
A7 |
0 |
0 |
1 |
1 |
1 | |
3 |
A8 |
0 |
1 |
0 |
0 |
0 | |
4 |
A9 |
1 |
0 |
0 |
0 |
1 | |
4 |
A10 |
0 |
1 |
0 |
1 |
0 | |
5 |
A11 |
0 |
1 |
0 |
1 |
1 | |
5 |
A12 |
0 |
1 |
1 |
0 |
0 | |
6 |
A13 |
0 |
1 |
1 |
0 |
1 | |
6 |
А14 |
0 |
1 |
1 |
1 |
0 | |
7 |
А15 |
0 |
1 |
1 |
1 |
1 | |
Другие рефераты на тему «Программирование, компьютеры и кибернетика»:
Поиск рефератов
Последние рефераты раздела
- Основные этапы объектно-ориентированного проектирования
- Основные структуры языка Java
- Основные принципы разработки графического пользовательского интерфейса
- Основы дискретной математики
- Программное обеспечение системы принятия решений адаптивного робота
- Программное обеспечение
- Проблемы сохранности информации в процессе предпринимательской деятельности