Внутримашинное информационное обеспечение управления
Рис. 5. Структура иерархической базы данных
Каждый сегмент лежит на единственном иерархическом пути, начинающемся с корневого сегмента. При описании такой логической организации данных достаточно для каждого сегмента указать его входной сегмент. Так как в иерархической модели каждому входному сегменту данных соответствует N выходных, то такие модели весьма удобны для представления отношений
типа 1:L в предметной области.
Некоторым недостатком иерархических моделей является их неэффективность при реализации отношений типа L:L, медленный доступ к сегментам данных нижних уровней иерархии и четкая ориентация только на определенные типы запросов и др. В связи с этим в настоящее время СУБД, базирующиеся на иерархических моделях, подвергаются существенным модификациям, позволяющим поддерживать более сложные типы структур и, в первую очередь, сетевые их модификации.
Сетевая модель во многом подобна иерархической и отличается от нее только тем, что допускает несколько входных сегментов наряду с возможностью наличия сегментов без входов с точки зрения иерархической структуры. На рис. 6 представлен простой пример сетевой структуры, полученной на основе модификации иерархической топологии (рис. 5).
Рис. 6. Структура сетевой базы данных
Графическое отображение структуры связей сегментов в такого типа моделей представляет собой сеть. Сегменты данных в сетевых базах данных могут иметь множественные связи с сегментами старшего уровня. В связи с тем, что в сетевых моделях имена и направление связей не так очевидны, как в иерархических моделях данных, они должны указываться при описания базы данных. В сетевых моделях данных любая запись старшего уровня может содержать данные, относящиеся к набору записей подчиненного уровня. Обращение к набору всех записей реализуется, начиная с записи старшего уровня. При этом нет необходимости, как это выполняется в иерархических моделях, осуществлять доступ к искомому набору записей через корневой сегмент. Обращение к данным возможно с любой точки доступа по связям.
Сетевые модели данных по сравнению с иерархическими являются более универсальным средством отображения во внутримашинной сфере структуры информации для разных предметных областей и это существенно расширяет сферу их применения. Достоинством сетевых моделей является отсутствие дублирования данных в различных элементах модели. Кроме того, технология работы с сетевыми моделями является более удобной, так как доступ к данным практически не имеет ограничений и возможен непосредственно к объекту любого уровня. Допустимы всевозможные запросы. Однако следует отметить, что ввиду сложности сетевых моделей, разработка СУБД на их основе предполагает использование опытных системных аналитиков и программистов. Кроме того, при использовании сетевых моделей более остро стоит проблема обеспечения сохранности информации в базе данных.
Реляционные модели данных отличаются от сетевых и иерархических простотой структур данных, удобным для пользователя табличным представлением и доступом к данным. Большинство современных баз данных в настоящее время разрабатываются на основе моделей подобного типа. Реляционную модель представления информации предложил в 1970 г. сотрудник фирмы IBM Эдгар Кодд. Данная модель позволяет выполнять все необходимые операции по запоминанию и поиску данных и обеспечивает целостность данных.
Модель основана на математическом понятии отношения, расширенном за счет значительного добавления специальной терминологии и развития соответствующей теории. В такой модели общая структура данных (отношений) может быть представлена в виде таблицы, в которой каждая строка значений (кортеж) соответствуют логической записи, а заголовки столбцов являются названиями полей (элементов) записи. Процедуры запоминания и поиска осуществляются с применением операций на множествах (объединение, пересечение, разность, произведение) и реляционных операций (выбрать, спроецировать, соединить, разделить). Отметим, что хотя реляционная модель и выглядит как совокупность связанных таблиц, но на физическом уровне данные хранятся в файлах, содержащих последовательности записей.
В реляционной модели каждому объекту предметной области соответствует одно или более отношений. При необходимости связь между объектами можно указать в явном виде. В такой связи (отношении) в качестве атрибутов указываются идентификаторы взаимосвязанных объектов. В реляционной модели объекты предметной области и связи между ними представляются одинаковыми конструкциями, что существенно упрощает модель.
Суть реляционной модели можно пояснить на следующем примере. Пусть в базе данных строительного предприятия имеются два файла: а) справочник железобетонных изделий; б) отчет о поставках изделий (рис. 7). Каждый из этих файлов содержит определенное число записей, состоящих из фиксированного числа полей (соответственно 4 и 4).
Рис. 7. Фрагмент реляционной модели базы данных
В данном фрагменте базы данных определены два отношения (файла), имеющие общий элемент значения поля Изделие. Операции реляционной алгебры могут объединить два типа записей по этому общему элементу. Например, в результате соединения запись ПС может представиться в следующем виде:
ПС <Объем (м3)><Расход арм. (кг)><Расход цем. (кг)>
<ЖБИ5><К-во><Дата поставки> .
Иначе говоря, к сведениям о изделии добавляются сведения о всех его поставках, имеющиеся в реляционной базе данных. Связь между записями допускается по нескольким полям, позволяя выполнять достаточно сложные манипуляции с данными. Поля данных, связывающих вместе две записи, могут быть уникальными для данной пары, но могут дублироваться и во многих других записях. Они могут повторяться неоднократно, связывая между собой записи. Аналогичным образом можно проиллюстрировать выполнение в реалиционной модели операций проекции и селекции.
Чтобы не допустить потерь или искажения информации в реляционной базе данных необходим соответствующий контроль всех взаимосвязей записей. Этот контроль выполняется СУБД, которые в процессе работы постоянно пересчитывают число связей для каждой записи базы данных в прямом и обратном направлениях. При больших объемах баз данных осуществление такого контроля может потребовать существенных затрат машинного времени.
Список используемой литературы:
1. Автоматизированные информационные технологии в экономике./ Под ред. проф. Г.А.Титоренко. –М.: Компьютер, ЮНИТИ, 2006.-205 с.
2. Компьютерные технологии обработки информации./ Под ред. С.В.Назарова. –М.: Финансы и статистика, 2007. – 487 с.
3. Каpатыгин С. Компьютеp для носоpога. // Кн.З.: Носоpог в моpе данных. // Базы данных: пpостейшие сpедства обpаботки инфоpмации; электpонные таблицы; системы упpавления базами данных. В 2-х томах. - М.: ABF, 20055.
4. Хаселиp Р. Опеpационная система Windows 3.1. - М.: ЭКОМ, 2003. – 156 с.
Другие рефераты на тему «Программирование, компьютеры и кибернетика»:
- Программное обеспечение системы принятия решений адаптивного робота
- Периферийные устройства
- Объекты автоматизации в системе организации управления
- Автоматизация учета и анализа уровня затрат на крупного рогатого скота
- Комбинированное звуковое USB-устройство с функциями автономного MP3-плеера и поддержкой Bluetooth
Поиск рефератов
Последние рефераты раздела
- Основные этапы объектно-ориентированного проектирования
- Основные структуры языка Java
- Основные принципы разработки графического пользовательского интерфейса
- Основы дискретной математики
- Программное обеспечение системы принятия решений адаптивного робота
- Программное обеспечение
- Проблемы сохранности информации в процессе предпринимательской деятельности