Внутренние и периферийные устройства ПК
Все последующие микропроцессоры как фирмы Intel, так и других фирм являются мультимедийными с еще большим набором специальных команд (добавлено еще более 100 мультимедийных команд), хотя в обозначении микросхемы этот факт не находит отражения.
С начала 1998 года Intel избрал новую политику - дробить рынок на части и для каждой делать свой продукт. Так наряду с производительными и дорогими P
entium II (с начала 1999 г. Pentium III) появилось семейство Celeron (рис.1-1), нацеленное на низшую ценовую категорию для конкуренции с микропроцессорами фирмы AMD.
Процессоры следующего поколения Pentium III выпущены по новой (0.18 мкм) технологии и имеет более высокую тактовую частоту 500-550 МГц. В нем реализованы расширения инструкций, получившие название SSE (Streaming SIMD Extensions). Это позволяет достичь высоких скоростей разработки и насыщенности цифрового содержания для воспроизведения специальных эффектов, рендеринга, создания 3-мерных изображений и текстур, а также обеспечивает значительное повышение производительности сети и Internet-приложений, использующих протокол TCP/IP, а также увеличение производительности приложений с интенсивным использованием системной или кэш-памяти.
В последние годы Intel развивает серию Pentium 4: 2000г.- Intel Pentium 4 (Willamette, Socket 423). Принципиально новый процессор с гиперконвейеризацией (hyperpipelining) - с конвейером, состоящим из 20 ступеней. Согласно заявлениям Intel, процессоры, основанные на данной технологии, позволяют добиться увеличения частоты примерно на 40 процентов относительно семейства P6 при одинаковом технологическом процессе. Применена 400 МГц системная шина (Quad-pumped), обеспечивающая пропускную способность в 3,2 ГБайта в секунду против 133 МГц шины с пропускной способностью 1,06 ГБайт у Pentium III. Кодовое имя: Willamette. Технические характеристики: технология производства - 0,18 мкм; тактовая частота - 1.3-2 ГГц; кэш первого уровня - 8 Кб; кэш второго уровня - 256 Кб (полноскоростной); процессор 64-разрядный; шина данных 64-разрядная (400 МГц); разъём Socket 423.
В 2001г. появился Intel Pentium 4 (Willamette, Socket 478). Этот процессор выполнен по 0.18 мкм процессу. Устанавливается в новый разъём Socket 478, поскольку предыдущий форм-фактор Socket 423 был «переходным» и Intel в дальнейшем не собирается его поддерживать. Кодовое имя: Willamette. Технические характеристики: технология производства - 0,18 мкм; тактовая частота - 1,3-2 ГГц; кэш первого уровня - 8 Кб; кэш второго уровня - 256 Кб (полноскоростной); процессор 64-разрядный; шина данных 64-разрядная (400 МГц); разъём Socket 478. Последние модификации процессора выпускаются по 0,13 мкм технологии с частотой системной шины 533 МГц.
1.2. Основная (материнская) плата и шина
Для того чтобы микропроцессор мог работать, необходимы некоторые вспомогательные компоненты. Когда данные передаются внутри компьютерной системы, они проходят по общему каналу, к которому имеют доступ все компоненты системы. Этот путь получил название шины данных. Необходимо отметить, что понятие «шина данных» имеет общее значение, конкретно же и микропроцессор имеет свою шину данных и оперативная память. Когда нет специального уточнения, то речь идет, как правило, об общей шине, или иначе шине ввода-вывода.
Эта шина формируется на сложной многослойной печатной плате - основной, или иначе, материнской (motherboard рис. 1-2).
Системная шина представляет собой совокупность сигнальных линий, объединённых по их назначению (данные, адреса, управление). Основной функцией системной шины является передача информации между базовым микропроцессором и остальными электронными компонентами компьютера. По этой шине так же осуществляется не только передача информации, но и адресация устройств, а также обмен специальными служебными сигналами.
Концепция шины представляет собой один из наиболее совершенных методов унификации при разработке компьютеров. Вместо того чтобы пытаться соединять все элементы компьютерной системы между собой специальными соединениями, разработчики компьютеров ограничили пересылку данных одной общей шиной.
Эта идея чрезвычайно упростила конструкцию компьютеров и существенно увеличила ее гибкость. Чтобы добавить новый компонент, не требуется выполнять множество различных соединений, достаточно присоединить его к шине через специальный разъем (Slot). Чтобы упорядочить передачу информации по шине используется контроллер шины.
На основной плате когда-то были только шина, процессор и оперативная память. Все остальные устройства размещались на сменных платах, включаемых в разъемы (слоты) шины. Сейчас на motherboard находится добрая половина компьютера - и контроллер дисков, и видеоадаптер и порты. А вот процессор и память помещены на сменные платы (модули) - ибо более мощные процессоры и более емкие микросхемы памяти появляются по несколько раз в год и их можно заменить. Для современных компьютеров наметилась тенденция размещения дополнительного оборудования на motherboard (видеоадаптер, звуковая аппаратура, модем – интеграция технических средств).
Архитектура системной шины (приложение 1) той или иной модели системной платы зависит от производителя и определяется типом платформы ПК (типом центрального процессора), применяемым набором микросхем chipset и количеством и разрядностью периферийных устройств, подключаемых к данной системной плате.
Максимальная пропускная способность часто используется в качестве критерия для сравнения возможностей шин различной архитектуры. Ее можно рассчитать, умножив рабочую частоту на количество байт, передаваемое в одном такте (ширину полосы пропускания).
Для особо быстродействующих устройств нужны другие способы подключения. Отдельные (локальные) шины, работающие с основной частотой материнской платы, появились, прежде всего, для памяти - основной и кэш (cache). Затем на локальную шину «посадили» видеоадаптер.
Эту шину VLB создала группа VESA - Video Electronic Standard Association, разработавшая стандарт - Video Electronic Standard Architecture, и поэтому у нее два обозначения - Video Local Bus и VESA Local Bus. Поскольку локальная шина подключена непосредственно к микропроцессору, имеющему 32-разрядную шину данных, то при основной частоте 33 МГц получается скорость обмена 132 Мбайта в секунду.
PCI (Peripheral Component Interconnect bus) - шина для подсоединения периферийных устройств появилась в 1992 г. и утверждена организацией Special_Interest_Group_Steering_Committee. Она стала массово применяться для Pentium-систем. Шина работает с объектами, имеющими напряжение 5 либо 3,3 вольт. Взаимодействие объектов происходит напрямую, без участия центрального процессора (CPU). PCI является 32-разрядной с возможностью расширения до 64 разрядов. Пиковая пропускная способность равна 132 Мбайт/с при 32 разрядах и 264 Мбайт/с при 64 разрядах. В современных материнских платах частота на шине PCI задается как 1/2 входной частоты процессора, т.е. при частоте 66 MHz на PCI будет 33 MHz, при 75 MHz - 37.5 MHz и т.д. Шина хорошо стыкуется с локальной сетью.
Другие рефераты на тему «Программирование, компьютеры и кибернетика»:
Поиск рефератов
Последние рефераты раздела
- Основные этапы объектно-ориентированного проектирования
- Основные структуры языка Java
- Основные принципы разработки графического пользовательского интерфейса
- Основы дискретной математики
- Программное обеспечение системы принятия решений адаптивного робота
- Программное обеспечение
- Проблемы сохранности информации в процессе предпринимательской деятельности