Автоматическая система регулирования температуры

2.6.2 Область устойчивости системы в области параметров ПИ регулятора.

Характеристический полином системы:

Нас интересуют переменные Tp и Кр, запишем в виде:

Определим условие устойчивости по критерию гурвица:

Δn= src="images/referats/3845/image056.png">=0

Получим:

Решив в Maple уравнение относительно Tp получим выражение для построений области устойчивости:

Построим график этой зависимости:

2.7 Корневой годограф системы

2.8 Импульсные и переходные характеристики разомкнутой системы относительно задающего и возмущающего воздействий

Импульсная и переходная характеристики относительно задающего воздействия

Импульсная и переходная характеристики относительно возмущающего воздействия

2.9 Аналитический расчет переходных процессов в замкнутой системе при ступенчатых изменениях задающего и возмущающего воздействий

Амплитудные значения сигналов принять равными 10% от соответствующих значений в рабочей точке, т.е. u3=0.4 В и Qc=2.5 ºC

Для получения переходной характеристики необходимо записать п.ф. замкнутой системы (по задающему или возмущающему воздействию), умножить на a/s, где а – амплитуда ступенчатой функции. Затем нужно осуществить обратное преобразование Лапласа полученного выражения и, получив зависимость h(t), построить график переходного процесса.

Для задающего значения аналитическая зависимость имеет вид:

автоматический регулирование температура линеаризованный matlab

Для возмущающего значения аналитическая зависимость имеет вид:

2.10 Выполнить моделирование линеаризованный системы с помощью Matlab

Определить импульсные и переходные характеристики при изменении возмущающего и задающего значений. Определить КЧХ разомкнутой системы

Схема системы, собранная в Simulink:

Характеристики системы.

Импульсная и переходная характеристики относительно задающего воздействия

Импульсная и переходная характеристики относительно возмущающего воздействия

КЧХ разомкнутой системы

2.11 Выполнить оптимизацию линеаризованной системы с помощью моделирования

Определить параметры регулирующего устройства, обеспечивающие минимум интегральной срендеквадратичной ошибки

Оптимизацию проведем с помощью САПР VisSim.

Схема для оптимизации параметров ПИ-регулятора

На схеме представлены итоговые значения параметров Kp=20.39, Tp=9.85, а также график переходного процесса в системе при рассчитанных параметрах. Алгоритм завершил оптимизацию за 194 итерации.

2.12 Определить для оптимизированной системы ЛЧХ, КЧХ, импульсную и переходную характеристики, переходные процессы в замкнутой системе при ступенчатых изменениях сигнала задания и возмущения

Определить запасы устойчивости по амплитуде и фазе. Построить Корневой годограф системы. Сравнить характеристики с исходной системой.

Оптимизированная Неоптимизированная

Импульсная и переходная хар-ки

ЛАФЧХ

КЧХ

Запас устойчивости по амплитуде и фазе:

Т.о. запас по фазе Gm=inf, запас по фазе Pm=3.78 град.

Корневой годограф системы

2.1. Исследовать процессы в системе (для выходного сигнала и ошибки) при действии на входе следующих сигналов

Линейный изменяющийся сигналuз(t) = 0,05×uз0t, где uз0 - сигнал задания, соответствующий рабочей точке.

Частота среза схемы: wс=2.97 рад/с

Гармонические сигналы

uз(t) = 0,2uз0sinwсt

uз(t) = 0,2uз0sin(0.1wсt)

uз(t) = 0,2uз0sin(10wсt)

Случайный сигнал типа «белый шум» с дисперсией D=0.1* (uз0^2)

2.14 Оценка точности системы. Основные составляющие ошибки

Основные составляющие ошибки:

E=Eв+Ез+Ед+Ен

Где Е – полная ошибка системы; Ев – ошибка по возмущающему воздействию; Ез – ошибка по задающему воздействию; Ед – ошибка датчика или чувствительного элемента; Ен – параметрическая ошибка.

Ошибка по заданию:

Фз(s)=

Ез=0Uз+10Uз’- 5Uз”=0

Ошибка по возмущению:

Фεв=;

Eв=0Q+0.025Q’- 6,7Q²=0

Таким образом, ошибка в системе сводится лишь к ошибке датчика.

У типовых резисторов точность измерения составляет ±0.02ºС при диапазоне измеряемых температур до -45 400ºС.

Страница:  1  2  3  4  5 


Другие рефераты на тему «Программирование, компьютеры и кибернетика»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы