Источник бесперебойного питания мощностью 600 Вт
Струм через первинну обмотку Т2 наростає лінійно, але при включенні і виключенні транзистора виникають викиди струму. Ці викиди можуть призводити до самовільного включення і виключення ІМС. Для запобігання цьому явищу ставиться RC фільтр. Рис. 1.4.1.
Рис. 1.4.1. Схема компаратора струму з
RC-фільтром.
Після включення транзистора починається етап передачі енергії накопленої в трансформаторі в навантаження. Напруга знята з обмотки W1, Т2 випрямляється діодом VD11 та фільтрується ємнісним фільтром С35, С36.
Схема стабілізації вихідної напруги побудована на управляючому стабілітроні VD12-TL431.
Резистори R56, R57, R58 утворюють резисторний дільник, величиною опорів якого, в загальному, виставляється значення вихідної напруги зарядного присторою. Резистор R54 є струмообмежуючим резистором для стабілітрона VD12 та оптрона U1.2.
2. Перетворювач постійної напруги в постійну
Даний вузол призначений для перетворення постійної напруги 12В у постійну напругу 300В. Вихідна напруга даного перетворювача є нестабілізованою, при Uвх=13,8В, Uвих=300В при Uвх=10,5В, Uвих=225В.
Тому для нормальної роботи ДБЖ потрібна падальна стабілізація Uвих.
Даний перетворювач побудований на мікросхемі S63525А, функціональна схема якої приведена на Рис. 1.4.3.
Рис. 1.4.3. Функціональна схема SG3525.
З виходів мікросхеми (виводи 14 та 11) прямокутні імпульси поступають на трансформатор Т1. На вторинних обмотках трансформатора імпульси будуть двохполярні з скважністю 0,9.
Резисторно – конденсаторні ланки С23R31 та С27R32 призначені для того, щоб збити амплітуду викидів при переключеннях.
Сам перетворювач побудований по схемі з плаваючою середньою точкою. Пари силових транзисторів VT4, VT5 та VT6, VT7 включаються по черзі з щілинністю майже 0,5. Такий режим вибраний з метою зменшення викидів при переключенні, та отриманню симетрії в кожен період переключення. З вторинної обмотки прямі імпульси випрямляються діод ними мостом VD17, VD18, VD19, VD20 та згладжується фільтром С1L1, С2С4, С3С5. З вторинної обмотки Т3 також беруться додаткові напруги живлення 9В та 18В, гальванічно розв’язані між собою. Стабілізація цих напруг проводиться стабілітроном VD21 VD22 VD23 VD24.
Мікросхема VD1 включена по типовій схемі включення. Ланкою С7,R1 визначається вихідна частота. Живлення вихідних каскадів ІМС проводиться через R15. С12, С13 призначені для фільтрації напруги живлення ІМС. Дистанційне керування роботою перетворювача проводиться через 10 вивід DA1 від мікроконтроллера.
3. Стабілізатор напруги 300В
Даний стабілітрон побудований по схемі однотактового підвищуючого перетворювача. Схема побудована на ІМС UC3842. Принцип роботи заклечається в наступному: при подачі живлення на DA4 на її вихід (вивід 6) подається імпульс амплітудою 9В, який через дільник R18R33 поступає на затвор VT2 і відкриває його коли транзистор відкритий через L2 VT2 R34 протікає струм. Індуктивність L2 накопляє енергію. При досягненні певного рівня сигналу, що знімається з вимірювального резистору R34, на виході DA1 з’являється логічний нуль. Наступний імпульс з’явиться при новому циклі тактового генератора. Зворотній зв’язок по напрузі здійснюється через резисторну ланку R11, R8, R9.
Оскільки для утворення спільної точки з напругою мережі утворено ємнісний дільник С2С4, С3С5 то вузол на DA4 стабілізує додатню півхвилю вихідної напруги, а вузол на DA5 – від’ємну.
Елементи схеми підібрані таким чином, що вхідній напрузі 300В на виході теж 300В, тобто стабілізація не потрібна. По мірі зменшення напруги на акумуляторі, на виході перетворювача постійної напруги в постійну також напруга буде зменшуватись, а вузол стабілізації її буде стабілізувати до 300В. Оскільки заземлені виводи DA5 підключені до мінусової напруги, яку потрібно стабілізувати, а стабілізацію потрібно здійснювати відносно нульової шини, то тут використовується ще додатковий вузол на DA3.
4. Вихідний інвертор
Вихідний інвертор побудований по півмостовій схемі. Навантаження підключається до середньої точки конденсаторного дільника C2 C4, C3 C5 та виходу інвертора (колектор VT13).
Ключовими елементами каскаду є силові транзистори VT12, VT13. керування роботою здійснюється за допомогою мікроконтроллера.
Даний вузол забезпечує дуже хороше наближення напруги до синусоїдальної. Це дозволило виконати два силових ключа VT12, VT13 на біполярних транзисторах з ізольованим затвором (IGBT), котрі працюють в лінійному режимі. Їх почерговим відкриттям керують прямокутні імпульси, що поступають в протифазі від контролеру DD1. Ці імпульси проходять ланки, що формують з них сигнал, який подібний по формі до півперіода синусоїди і подаються на затвори VT12, VT13.
Індуктивність L4 забезпечує згладжування фронтів вихідних імпульсів з інвертора.
5. Схема байпасу
Схема байпасу призначена для швидкого перемикання навантаження на роботу від мережі або на роботу від акумуляторної батареї. Перемикання здійснюється за допомогою реле K1, яке керується мікро контролером. Конденсатори C52, C53 служать запобіганню виникнення іскри і підгорянню контактів реле при переключеннях.
Для забезпечення кращої форми вихідної напруги та запобіганню попадання електромагнітних завад від ДБЖ в навантаження служить фільтр C56, L6, C59.
6. Вузол керування
Вузол керування роботою ДБЖ виконаний на мікроконтролері DD1-ATTiny 261. Функціональна схема контролера приведена на рис. 1.4.4.
Рис. 1.4.4. Функціональна схема ATTiny26.
Для синхронізації роботи ДБЖ з мережею використовується вимірювальний трансформатор T4, вихідний сигнал з якого випрямляється та подається на входи АЦП мікроконтролера. Для вимірювання струму який споживається навантаженням використовується трансформатор струму T5. Його вихідний сигнал випрямляється і подається на вхід АЦП мікроконтролера. Загальний алгоритм роботи МК вписується в алгоритм роботи всього ДБЖ.
Після включення вмикача SA1 („Вкл.”) на вхід DA6 поступає постійна напруга з акумулятора. DA6 формує на виході +5В, необхідних для живлення мікроконтролера.
Мікроконтролер, після подачі на нього живлення, починає проводити вимірювання напруги акумуляторної батареї, а також вмикає реле K2, тим самим під’єднавши ДБЖ до мережі. Далі МК вимірює напругу мережі. Якщо напруга мережі не в межах норми, то МК дає команду на перемикання на роботу від акумулятора. Коли ж ні напруга акумулятора, ні напруга мережі не відповідає нормам, то МК здійснює повне відключення навантаження від мережі.
Другие рефераты на тему «Коммуникации, связь и радиоэлектроника»:
- Проект гелеоисточника для энергохозяйства
- Зонная модель твердого тела. Уравнение Шредингера для кристалла
- Разработка системы непрерывного управления координатами электропривода с заданными показателями качества
- Нелинейные и линейные модели биполярного транзистора
- Проектирование системы оптимального корректирующего устройства
Поиск рефератов
Последние рефераты раздела
- Микроконтроллер системы управления
- Разработка алгоритмического и программного обеспечения стандарта IEEE 1500 для тестирования гибкой автоматизированной системы в пакете кристаллов
- Разработка базы данных для информатизации деятельности предприятия малого бизнеса Delphi 7.0
- Разработка детектора высокочастотного излучения
- Разработка микропроцессорного устройства для проверки и диагностики двигателя внутреннего сгорания автомобиля
- Разработка микшерного пульта
- Математические основы теории систем