Исследование электровакуумного триода в рамках виртуального эксперимента

Соотношение влияний сетки и анода на анодный ток характеризует важнейший параметр триода — коэффициент усиления µ. Коэффициент усиления показывает, во сколько раз напряжение сетки действует на анодный ток сильнее, чем напряжение анода. Если триод имеет µ = 10, то это значит, что сетка действует в 10 раз сильнее, чем анод. Чем гуще сетка, тем больше значение µ. При данной густоте сетки коэффицие

нт µ имеет наибольшее значение при некотором среднем положении сетки между катодом и анодом. В современных триодах коэффициент µ равен единицам или десяткам.

Иногда вместо коэффициента усиления µ пользуются обратной величиной — проницаемостью D:

Очевидно, что D < 1. Проницаемость показывает, какой доле действия сетки на катодный ток эквивалентно действие анода. Если, например, µ = 10, то D = 0,1. Это значит, что действие анода на катодный ток равноценно 0,1 действия сетки, т. е. действие анода в 10 раз слабее.

Термин «проницаемость» введен впервые немецким ученым Г.Г. Баркгаузеном, внесшим большой вклад в теорию электронных ламп, и подчеркивает роль экранирующего действия сетки. Можно сказать, что проницаемость характеризует «пропускную способность» сетки для электрического поля анода. Чем реже сетка, тем легче через нее проникает от анода к катоду электрическое поле и тем больше значение D. Зато коэффициент µ соответственно уменьшается. Не следует считать проницаемость D «пропускной способностью» сетки для электронного потока. Это является грубой, ошибкой. Конечно, более густая сетка является большим препятствием для электронного потока, но отсюда вовсе не следует, что D показывает, какая часть потока проходит сквозь сетку.

Особый интерес представляют процессы в триоде при отрицательном напряжении сетки, так как приемно-усилительные лампы обычно работают в этом режиме. В пространстве сетка — катод отрицательный заряд сетки создает тормозящее поле, которое противодействует ускоряющему полю, проникающему от анода. Потенциальный барьер у катода при. этом повышается и катодный ток уменьшается. При некотором отрицательном сеточном напряжении ток уменьшается до нуля, т. е. лампа «запирается». Такое отрицательное напряжение сетки называют запирающим (ug зап). При этом поле сетки в пространстве сетка - катод настолько повышает потенциальный барьер, что все электроны, вылетающие из катода, возвращаются на него. Если же при ug < 0 запирания лампы еще нет, то это означает, что электроны, имеющие значительные начальные скорости, все же преодолевают потенциальный барьер и летят к аноду.

Запирающее напряжение сетки невелико по сравнению с анодным напряжением, так как сетка действует сильнее анода. Например, у триода, имеющего µ = 20, при ua = 100 В запирающее напряжение составляет - 5 В. При µ = 20 анодное напряжение 100 В по своему действию эквивалентно сеточному, напряжению 5 В. Поэтому, подав на сетку иg зап = -5 В, можно полностью скомпенсировать влияние анода.

Итак, сравнительно небольшое отрицательное напряжение сетки может значительно уменьшить анодный ток и даже совсем его прекратить.

Положительное сеточное напряжение создает ускоряющее поле, которое складывается с полем, проникающим от анода. Результирующее поле понижает потенциальный барьер. Число электронов, преодолевающих его, увеличится. Возрастет и катодный ток. Часть электронов при этом неизбежно притянется к сетке и в ее цепи возникнет сеточный ток, который почти всегда нежелателен. Он бесполезен и во многих случаях оказывает вредное влияние на работу лампы. Если положительное напряжение сетки значительно меньше анодного напряжения, сеточный ток невелик и во многих случаях им можно пренебречь. Чем гуще сетка и чем больше ее положительное напряжение, тем больше сеточный ток.

Так как сетка действует гораздо сильнее анода, то сравнительно небольшое положительное напряжение сетки вызывает значительное возрастание анодного ока. Например, пусть триод имеет µ = 20 и при напряжениях ug = 0 и ua = 100 В анодный ток равен 10 мА. Предположим, что для увеличения анодного тока до 20 мА надо при неизменном сеточном напряжении удвоить анодное напряжение, т е. подать на анод 200 В. Но при µ = 20 анодному напряжению 100 В равноценно сеточное напряжение 5 В. Поэтому вместо увеличения анодного напряжена 100 В можно подать на сетку +5 В, и тогда анодный ток возрастет до 20 мА.

Итак, увеличение положительного напряжения сетки сопровождается ростом анодного и сеточного токов.

При больших положительных напряжениях сетки ток сетки настолько возрастает, что анодный ток иногда может даже уменьшаться.

Изменяя сеточное напряжение от отрицательного, запирающего лампу, до некоторого положительного, можно изменять анодный ток в широких пределах от нуля до максимального значения. Таково управляющее действие сетки. Важно, что значительные изменения анодного тока получаются при сравнительно небольших изменениях сеточного напряжения. Нужны в µ раз большие изменения анодного напряжения для того, чтобы получить такие же изменения анодного тока, Иначе говоря, небольшие изменения сеточного напряжения равноценны в µ раз большим изменениям анодного напряжения. Это основное свойство триода позволяет использовать его для усиления электрических колебаний.

Значительное влияние на работу триода оказывает так называемый островковый эффект. Он состоит в том, что из-за неоднородной структуры сетки поле, создаваемое сеткой, также неоднородно и влияет на потенциальный барьер в разных местах неодинаково. Поэтому высота потенциального барьера различна в разных местах у катода. Особенно сильно сказывается островковый эффект при приближении лампы к запиранию. Кроме того, чем ближе сетка к катоду и чем она реже, тем сильнее островковый эффект.

Токораспределение

При положительном напряжении сетки наблюдается токораспределение, т. е. распределение катодного тока между сеткой и анодом. Если напряжение анода выше напряжения сетки, то часть электронов попадает на сетку, а электроны пролетевшие сквозь сетку, летят к аноду. Такой режим называют режимом перехвата. В этом режиме ток сетки значительно меньше анодного тока. Если же напряжение сетки примерно одинаково с напряжением анода или выше его, то многие электроны, пролетевшие сквозь сетку, в пространстве сетка – анод тормозятся, сильно искривляют свои траектории, снижают до нуля продольную составляющую скорости и возвращаются на сетку. Подобный режим называют режимом возврата. Очевидно, что в режиме возврата всегда существует и перехват электронов сеткой

D:\Documents and Settings\Fiziki\Local Settings\Temporary Internet Files\Content.Word\160620091007.jpg
На рис. показаны некоторые, наиболее характерные траектории электронов в режиме возврата. Электроны 1, 2 и 3 перехватываются сеткой,

причем электрон 3, искривляя свою траекторию под действием сетки, не смог проскочить мимо сетки и попал на нее. Пролетевшие сквозь сетку электроны 5 и 6 попадают на анод, а электрон 4 возвращается на сетку. Электрон 7 возвращаясь к сетке, пролетает мимо ее проводов, попадает в промежуток сетка - катод, тормозится там, снова возвращается к сетке и только тогда попадает на нее.

Страница:  1  2  3  4  5  6  7  8 


Другие рефераты на тему «Коммуникации, связь и радиоэлектроника»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы