Ансамбли различаемых сигналов. Структура устройств распознавания портретов. Оптимальная обработка некоррелированных портретов
Для того чтобы с наименьшим риском ответить на вопрос о наличии портрета (сигнала) 1-го класса, необходимо проверить отношения правдоподобия для всех (их число равно М-1). Если все окажутся больше единицы, то
при наименьшем среднем риске следует принять гипотезу о наличии портрета (сигнала) 1-го класса. Если неравенства не соблюдены, то проверяются аналогичным образом отношения правдоподобия
и т.д., вплоть до . Максимально возможное число проверок равно таким образом M(M-1).
Процедуру принятия решения можно существенно упростить. Действительно, представив правило решения в виде:
если> , то,
и, разделив левую и правую части неравенства на многомерную плотность вероятности комплексных амплитуд принятого сигнала по элементам пространства распознавания (различения) при условии отсутствия всякого портрета (сигнала) , когда , находим правило решения в несколько иной форме:
еслито, где
- отношение правдоподобия зашумленного портрета (сигнала) К-го класса. Это правило решения прежде всего убеждает в том, что число проверок сокращается до числа проверяемых гипотез М-1. Во-вторых, это правило решения убеждает в преемственности задач обнаружения и распознавания. В самом деле, левая и правая части неравенства (правила решения) свидетельствуют о том, что вначале необходимо осуществить оптимальную пространственно-временную и поляризационную обработку каждого элемента портрета (n=1,…N)в соответствии с алгоритмом, рекомендуемый отношением правдоподобия
и, распределив комплексные амплитуда принятого сигнала по алиментам пространства распознавания (различения) осуществить совместную обработку элементов каждого К-го портрета (сигнала) (k=1,…M) в соответствии с алгоритмом, рекомендуемым отношением правдоподобия
.
Структура устройств распознавания портретов. Оптимальная обработка некоррелированных портретов.
Согласно решающего правила устройство распознавания М портретов должно состоять из устройства пространственно-временной и поляризационной обработки принятого сигнала по всем N элементам пространства распознавания, устройства распределения комплексных амплитуд принятого сигнала по элементам пространства распознавания (устройства формирования портрета), М каналов устройств оптимальной обработки всех К -х портретов (К=1,2 .М), устройства сравнения и принятия решения (рис. 5).
Рассмотрим два крайних случая: оптимальную обработку некоррелированных портретов (дальностный, картинный, доплеровский) и оптимальную обработку сильно коррелированных портретов (частотно-резонансный, поляризационный).
В случае некоррелированных портретов многомерная плотность вероятности совокупности комплексных амплитуд принятого сигнала, относящихся к N элементам пространства распознавания, в отсутствие портрета определяется выражением:
где - дисперсия (мощность) помеховых составляющих принятого сигнала по элементам пространства распознавания .
Та же многомерная плотность вероятности при наличии портрета К-го класса
где - дисперсия (мощность) составляющих К-го портрета по элементам пространства распознавания
Отношение правдоподобия, определяющее структуру оптимальной обработки портрета К-го класса
=
где - относительная интенсивность n – й комплексной амплитуды К-го портрета, откуда монотонно связанная с отношением правдоподобия величина (натуральный логарифм отношения правдоподобия)
где- весовые коэффициенты,
- слагаемое смещения.
Рис.5. Структура устройства распознавания
Полученный алгоритм обработки свидетельствует о том, что оптимальная обработка некоррелированных портретов сводится к их взвешенному некогерентному накоплению со смешением, причем весовые коэффициенты и слагаемые смешения определяется априорно известными сведениями об эталонных портретах, т.е. сведениями об относительной интенсивности их комплексных амплитуд . Структура устройства оптимальной обработки некоррелированного портрета показана на рис 6.
Рис. 6. Структура оптимальной обработки некоррелированного портрета
Представляет большой мировоззренческий и практический интерес вопрос о целесообразности выбора весовых коэффициентов и слагаемых смешения , рекомендуемого результатами проведенного синтеза устройств оптимальной обработки некоррелированных портретов. Для этого рассмотрим среднее значение случайной величины , лежащей в основе принятия решения, при условии наличия на входе устройства распознавания портрета К-го класса:
Другие рефераты на тему «Коммуникации, связь и радиоэлектроника»:
Поиск рефератов
Последние рефераты раздела
- Микроконтроллер системы управления
- Разработка алгоритмического и программного обеспечения стандарта IEEE 1500 для тестирования гибкой автоматизированной системы в пакете кристаллов
- Разработка базы данных для информатизации деятельности предприятия малого бизнеса Delphi 7.0
- Разработка детектора высокочастотного излучения
- Разработка микропроцессорного устройства для проверки и диагностики двигателя внутреннего сгорания автомобиля
- Разработка микшерного пульта
- Математические основы теории систем