Ансамбли различаемых сигналов. Структура устройств распознавания портретов. Оптимальная обработка некоррелированных портретов

Для того чтобы с наименьшим риском ответить на вопрос о наличии портрета (сигнала) 1-го класса, необходимо проверить отношения правдоподобия для всех (их число равно М-1). Если все окажутся больше единицы, то

при наименьшем среднем риске следует принять гипотезу о наличии портрета (сигна­ла) 1-го класса. Если неравенства не соблюдены, то проверяются аналогичным образом отношения правдоподобия

и т.д., вплоть до . Максимально возможное число проверок равно таким образом M(M-1).

Процедуру принятия решения можно существенно упростить. Дей­ствительно, представив правило решения в виде:

если> , то,

и, разделив левую и правую части неравенства на многомерную плот­ность вероятности комплексных амплитуд принятого сигнала по эле­ментам пространства распознавания (различения) при условии отсут­ствия всякого портрета (сигнала) , когда , находим правило решения в несколько иной форме:

еслито, где

- отношение правдоподобия зашумленного портрета (сигнала) К-го класса. Это правило решения прежде всего убеждает в том, что число проверок сокращает­ся до числа проверяемых гипотез М-1. Во-вторых, это правило реше­ния убеждает в преемственности задач обнаружения и распознавания. В самом деле, левая и правая части неравенства (правила решения) свидетельствуют о том, что вначале необходимо осуществить опти­мальную пространственно-временную и поляризационную обработку каж­дого элемента портрета (n=1,…N)в соответствии с алгоритмом, рекомендуемый отношением правдоподобия

и, распределив комплексные амплитуда принятого сигнала по алимен­там пространства распознавания (различения) осуществить совмест­ную обработку элементов каждого К-го портрета (сигнала) (k=1,…M) в соответствии с алгоритмом, рекомендуемым отношением правдоподобия

.

Структура устройств распознавания портретов. Оптимальная обработка некоррелированных портретов.

Согласно решающего правила устройство рас­познавания М портретов должно состоять из устройства пространствен­но-временной и поляризационной обработки принятого сигнала по всем N элементам пространства распознавания, устройства распределе­ния комплексных амплитуд принятого сигнала по элементам простран­ства распознавания (устройства формирования портрета), М каналов устройств оптимальной обработки всех К -х портретов (К=1,2 .М), устройства сравнения и принятия решения (рис. 5).

Рассмотрим два крайних случая: оптимальную обработку некор­релированных портретов (дальностный, картинный, доплеровский) и оп­тимальную обработку сильно коррелированных портретов (частотно-ре­зонансный, поляризационный).

В случае некоррелированных портретов многомерная плотность ве­роятности совокупности комплексных амплитуд принятого сигнала, относящихся к N элементам пространства распознавания, в отсутст­вие портрета определяется выражением:

где - дисперсия (мощность) помеховых составляющих принятого сигнала по элементам пространства распознавания .

Та же многомерная плотность вероятности при наличии портрета К-го класса

где - дисперсия (мощность) составляющих К-го портре­та по элементам пространства распознавания

Отношение правдоподобия, определяющее структуру оптимальной обработки портрета К-го класса

=

где - относительная интенсивность n – й комплексной амплитуды К-го портрета, откуда монотонно связанная с отношением правдоподобия величина (натуральный логарифм отношения правдоподобия)

где- весовые коэффициенты,

- слагаемое смещения.

Рис.5. Структура устройства распознавания

Полученный алгоритм обработки свидетельствует о том, что оптимальная обработка некоррелированных портретов сводится к их взвешенному некогерентному накоплению со смешением, причем весовые коэффициенты и слагаемые смешения определяется априорно известными сведениями об эталонных портретах, т.е. сведениями об относитель­ной интенсивности их комплексных амплитуд . Структура уст­ройства оптимальной обработки некоррелированного портрета показа­на на рис 6.

Рис. 6. Структура оптимальной обработки некоррелированного портрета

Представляет большой мировоззренческий и практический инте­рес вопрос о целесообразности выбора весовых коэффициентов и слагаемых смешения , рекомендуемого результатами про­веденного синтеза устройств оптимальной обработки некоррелирован­ных портретов. Для этого рассмотрим среднее значение случайной величины , лежащей в основе принятия решения, при условии наличия на входе устройства распознавания портрета К-го класса:

Страница:  1  2  3  4 


Другие рефераты на тему «Коммуникации, связь и радиоэлектроника»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2025 - www.refsru.com - рефераты, курсовые и дипломные работы