Классификация и применение гидротурбин

Ковшовые гидротурбины в настоящее время применяют главным образом при напорах свыше 500 м (Н = 500 ÷ 2000 м). Их конструкции также претерпели существенные изменения. Современные мощные ковшовые гидротурбины выполняются вертикальными многосопловыми; они имеют более высокие значения КПД (т) = 91 ч- 92%) по сравнению с ранее применявшимися горизонтальными турбинами. Если на заданные диапазо

н напоров и условия работы ГЭС возможно применение нескольких различных типов гидротурбин или рабочих колес, то необходимо провести технико-экономический анализ различного энергетического оборудования и выбрать оптимальный вариант. Общая классификация гидротурбин различных типов по напорам представлена в таблице.

3. Применение гидротурбин в соответствия с напорами

Типы гидротурбин

Диапазон напоров Н, м

Единичная максимальная мощность N, Мет

Диаметр турбины максимальный

di, М

Реактивные гидротурбины

     

Осевые капсульные, трубчатые и другие гидроагрегаты

2—20

До 50

8

Вертикальные поворотно-лопастные турбины

6-80

250

10,5

Пропеллерные

6—80

150

9

Двухперовые

30—100

.250

8

Диагональные

30—200

300

8

Радиально осевые

30—700

800

10

Обратимые

     

Осевые

2-15

30

8

Диагональные

20—100

300

7,5

Радиально-осевые одноступенчатые

30—600

450

9,5

Активные гидротурбины

     

Ковшовые

300—2000

350

7,5

Наклонно- струйные

50—400

50

4

Двукратные

10—100

   

«Сфиндекс»

200-1500

   

4. Новые типы гидротурбин и обратимые гидроагрегаты

Рассмотрим основные типы гидротурбин, созданных или разрабатываемых в настоящее время:

Осевые горизонтальные поворотнолопастные гидротурбины (на напоры Н = 3 ÷20 м). Вертикальные гидроагрегаты низконапорных ГЭС (Н < 10 м) имеют большие размеры и веса и дорогую подводную часть здания. Горизонтальные осевые гидротурбины различных конструкций и компоновок (рис. 1, 2) экономичнее вертикальных осевых гидротурбин. Преимуществом этих гидротурбин является также наличие прямоосной отсасывающей трубы, вследствие чего поток при его движении через проточную часть турбины мало искривляется. Вследствие чего вне этого уменьшаются потери энергии, увеличивается пропускная способность.

Рис. 1. Схемы проточных частей горизонтальных осевых гидротурбин: а — шахтная; б — трубчатая.

Рис. 2. Капсульный гидроагрегат ПЛ15/984-Г-600 Киевской I 1 - капсула; 2 - статор; 3 - направляющий аппарат; 4 - рабочее колесо; 5 – отсасывающая труба.

Наиболее широкое применение среди горизонтальных поворотно-лопастных гидротурбин получили капсульные (рис. 2). Генератор капсульного агрегата расположен в капсуле. Габариты блока по высоте и в плане значительно меньше по сравнению с вертикальной осевой гидротурбиной такой же мощности, что приводит к снижению стоимости здания на 25—40%. При тех же напорах и диаметрах рабочих колес мощность капсульных гидротурбин на 10— 25% больше, чем осевых вертикальных их КПД в оптимуме выше на 2—3%, а при режиме номинальной мощности разница в КПД еще больше. Работа вертикальной осевой гидротурбины при форсированных расходах сопровождается вибрацией и большими потерями энергии, особенно в отсасывающей трубе, в то время как в капсульных гидроагрегатах при больших расходах эти явления проявляются значительно меньше.

На низкие напоры (Н = 3 ÷ 15 м) применяются в основном капсульные гидроагрегаты, как более совершенные.

Осевые двух-перовые вертикальные поворотно-лопастные гидротурбины (для средних и высоких напоров, Н = 40 м - 80 м). Для уменьшения высоты отсасывания и заглубления турбины необходимо улучшить ее кавитационные характеристики. Этого можно достичь, в частности, путем увеличения числа лопастей рабочего колеса. Однако при увеличении числа лопастей возрастают диаметр втулки рабочего колеса и скорости потока в рабочем колесе, что может привести не к улучшению, а к ухудшению кавитационных качеств осевой гидротурбины. Чтобы избежать чрезмерного увеличения втулки при числе лопастей г = 8, была разработана двух-перовая гидротурбина, у которой на каждом фланце лопасти размещены два пера (рис. 3). Модельные и натурные испытания двух-перовой гидротурбины подтвердили ее преимущества по сравнению с обычной осевой гидротурбиной при тех же напорах (Н = 40 ÷ 60 м). На большинстве режимов работы двух-перовая гидротурбина имеет хорошие кавитационные характеристики и малую нестационарность потока в проточной части.

Рис. 3. Рабочее колесо двухперовой гидротурбины:

1 — фланец; 2 — перо.

Контрроторные гидротурбины. Контрроторная гидротурбина имеет два последовательно расположенных рабочих колеса противоположного вращения (рис. 4). Вначале поток поступает на первое осевое рабочее колесо (ротор), а затем на второе рабочее колесо (контрротор). Таким образом, напор на гидротурбине можно распределить между двумя рабочими колесами, что позволит применить контрроторную гидротурбину на более высокие напоры (Н = 80 ÷ 100 м). Конструкция контрроторного гидроагрегата предусматривает установку ротора гидротурбины с ротором генератора на одном валу, а контрротора гидротурбины со «статором» генератора — на другом. Поскольку ротор и «статор» генератора вращаются в противоположных направлениях, оборотность генератора существенно увеличивается, что приводит к уменьшению его веса и размеров. Однако проблема съема мощности с вращающегося «статора» генератора, значительное усложнение конструкции агрегата и его регулирования не позволяют пока применять на ГЭС контрроторные гидротурбины.

Страница:  1  2  3  4  5 


Другие рефераты на тему «Физика и энергетика»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы