Вещество в состоянии плазмы

Однако в противоположность обычной газовой смеси, все час-

тицы которой независимо от их принадлежности к той или иной составляющей имеют одинаковую среднюю кинетическую энергию беспорядочного теплового движения, у электронов, ионов и нейтральных атомов плазмы газового разряда средняя кинетическая энергия различна. Электроны, как правило, обладают гораздо более высокими энергиями, чем ионы,

а кинетическая энергия ионов может превышать энергию нейтральных атомов и молекул. Поэтому можно сказать, что плазма представляет собой смесь компонент с различными температурами. Как известно средняя величина кинетической энергии WT беспорядочного теплового движения W связана с температурой T следующим соотношением:

где k – так называемая постоянная Больцмана, равная 1,38×эрг/град. Из-за различия в величине средней кинетической энергии электронов , ионов и нейтральных частиц в плазме вместо одной общей температуры следует различать три разные температуры: электронную Te, ионную Ti и атомную T0. Обычно Te >> Ti > T0, где “>>” означает «во много раз больше». Очень большое различие между Te и Ti, характерное для большинства форм газового разряда, обусловлено громадной разницей в величине массы электронов и ионов. Внешние источники электрической энергии, с помощью которых создаётся и поддерживается газовый разряд, передают энергию непосредственно электронам плазмы, т.к. именно лёгкие электроны являются носителями электрического тока. Ионы приобретают свою энергию благодаря столкновениям с быстро движущимися электронами. Однако при каждом отдельном столкновении из-за большого различия в массе лёгкий электрон передаёт иону лишь небольшую часть своей кинетической энергии. Простой анализ, основанный на применении закона сохранения энергии и закона сохранения суммарного количества движения, показывает, что если тело малой массы m сталкивается упруго с телом во много раз большей массы M, то относительная доля кинетической энергии, которую легкое тело в состоянии передать тяжёлому, не может превысить . Отношение массы электрона к массе иона равно 1 : 1840 A, где A – атомный вес вещества, которому принадлежат ионы. Следовательно наибольшая величина, передаваемой энергии соствляет всего . Поэтому электрон должен испытать очень много столкновений с ионами, для того, чтобы полностью отдать имеющийся у него излишек энергии. Поскольку параллельно процессам, при которых происходит обмен энергией между электронами и ионами, идёт процесс приобретения энергии электронами от источников электрического тока, питающего разряд, в плазме при газовом разряде всё время поддерживаеться большой перепад температу между электронами и ионами. Так, например, в упоминавшихся выше газоразрядных приборах величина Te обычно лежит в пределах нескольких десятков тысяч градусов, в то время как величины Ti и T0 не превышают одной-двух тысяч градусов. При дуговом разряде, который используется в электросварке, электронная и ионная температуры ближе друг к другу вследствие того, что в этом случае разряд происходит в газе с большой плотностью и частые столкновения между электронами и ионами быстро выравнивают разность температур. При некоторых специальных условиях в сильно ионизированной плазме ионная температура может значительно превысить электронную. Такие условия возникают, например, при кратковременных разрядах большой мощности в экспериментальных установках. Например, можно взять угольные электроды, создать высокое давление, и подвести ток большой силы. В этом случае в узком межэлектродном пространстве возникнет сильно ионизированная плазма при температуре 50 000 K.

Следует также рассмотреть особенности движения частиц пла-

змы. Движения частиц обычного газа ограничиваются только столкновениями между собой или со стенками сосуда, в котором находиться этот газ. Движение частиц плазмы может быть ограничено магнитным полем. Плазму можно сдерживать магнитной стенкой, толкать магнитным поршнем, запирать в магнитной ловушке. В сильном магнитном поле частицы плазмы крутятся вокруг магнитных силовых линий. Вдоль магнитного поля частица движется свободно. Подробнее об этом будет рассказано ниже.

Квазинейтральность плазмы.

Даже в том случае, если плазма образуется в результате иони-

зации химически простого газа, например азота, кислорода, паров ртути, её ионная компонента будет содержать ионы различных сортов – с одним, двумя, тремя или более электронными зарядами. Следует отметить, что кроме атомарных ионов могут присутствовать молекулярные ионы, а также нейтральные атомы и молекулы. Каждая из этих компонент будет характеризоваться своей концентрацией n и температурой T. В общем случае, когда в плазме присутствуют однозарядные ионы с концентрацией n1, двухзарядные – с концентрацией n2, трёхзарядные – с концентрацией n3 и т.д., можно записать равенство: ne = n1 + 2n2 + 3n3 + … Такое соотношение между концентрацией отрицательных и положительных зарядов в плазме говорит о том, что плазма в целом квазинейтральна, т.е. в ней нет заметного избытка зарядов одного знака над зарядами другого. На этом свойстве плазмы следует остановиться несколько подробнее, т.к. оно имеет существенное значение и, в конечном счёте, в нём содержится самоё определение понятия «плазма». Естественно возникает вопрос: «С какой степенью точности в ионизированном газе должно соблюдаться условие квазинейтральности?». Каким бы путём не создавалась ионизация, заранее совсем не очевидно, что положительных и отрицательных зарядов должно быть поровну. Из-за различия в скоростях движения электронов и ионов, первые могут с большей лёгкостью покидать объём, в котором они возникли. Поэтому если благодаря процессам ионизации атомов первоначально образуется одинаковое количество зарядов противоположного знака, то из-за быстрого исчезновения электронов, погибающих на стенках аппаратуры, внутри которой находиться ионизированный газ, ионы, казалось бы, должны оставаться в значительном большинстве, т.е. не о какой нейтральности не может быть и речи. С другой стороны, необходимо учесть, что при преимущественной утечке зарядов одного знака в ионизированном газе немедленно образуется избыток зарядов другого знака, который способствует выравниванию потока электронов и ионов и препятствует увеличению разницы между концентрациями частиц обоих знака. Условия, при которых этот эффект будет достаточен для того, чтобы поддерживать квазинейтральность, можно описать следующим образом.

Допустим для простоты, что в ионизированном газе присут –

Страница:  1  2  3  4 


Другие рефераты на тему «Физика и энергетика»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2025 - www.refsru.com - рефераты, курсовые и дипломные работы