Вещество в состоянии плазмы
ствуют кроме ионов только однозарядные ионы. Квазинейтральность означает, что ne очень мало отличается от ni. Как отразиться на поведении отдельных частиц заметное отклонение ne от ni? Здесь сразу же выделяются два крайних случая. Если число заряженных частиц в объёме невелико, то создаваемые ими электрические поля слишком слабы для того, чтобы повлиять на их движение, даже если все поля склад
ываются. В этом случае отдельные электроны и ионы в своём поведении никак не связаны друг с другом и каждая частица движется так, как будто все другие отсутствуют. Следовательно условие квазинейтральности здесь не обязательно выполняется. Противоположный случай ионизированному газу с высокой концентрацией заряженных частиц, занимающему большой объём. В этом случае избыточные заряды, возникающие при сильном нарушении равенства между ne и ni, создают электрические поля, достаточные для выравнивания потоков и восстановления квазинейтральности.
В конечном счёте всё зависит от соотношения между потен-
циальной энергией отдельного иона или электрона в электрическом поле, возникающем при нарушении квазинейтральности, и величиной средней кинетической энергии частиц, связанной с их тепловым движением.
До сих пор речь шла о газовой плазме. Однако плазменные яв-
ления возникают часто в объектах, казалось бы, далёких от газов.
Остановимся, например, на металлах или полупроводниках. По
современным представлениям их структура такова: есть решётка, состоящая из упорядоченно расположенных частиц – ионов или нейтральных частиц, и есть газ хаотически перемещающихся носителей электричества, называемых электронами (заряд отрицательный) и дырками (заряд положительный). Электроны и дырки в твёрдых телах не являются частицами в полном смысле этого слова: в свободном состоянии именно таких частиц (т.е. с соответствующими зарядом и массой) нет. Тем не менее уравнения, описывающие их движение, подобны уравнениям, описывающим движения обычных частиц – с той разницей, что роль массы здесь играют некоторые величины, зависящие от структуры вещества. Эти величины обычно именуют эффективными массами электронов и дырок. Поэтому электроны и дырки в твёрдых телах именуют квазичастицами (лат. quasi – почти). Поскольку поведение заряженных квазичастиц аналогично поведению электронов и ионов, то и свойства газа электронов и дырок сходны со свойствами газовой плазмы. Отсюда и название такой системы – твёрдотельная плазма.
Движение частиц плазмы.
Хотя мы можем рассматривать плазму как некоторую частную
форму газовой смеси (в простейшем случае как смесь двух компонент: электронного и ионного газа), однако по целому ряду основных физических свойств она отличается от обычного газа, содержащего лишь нейтральные частицы. Это различие проявляется прежде всего в поведении плазмы под действием электрических и магнитных полей. В противоположность обычному нейтральному газу, на который электрические и магнитные поля не оказывают заметного воздействия, плазма под действием таких полей может очень сильно изменять свои свойства. Под действием электрического поля (даже очень слабого) в плазме появляется электрический ток. В магнитном поле плазма ведёт себя, как очень своеобразное диамагнитное вещество. Плазма может также интенсивно взаимодействовать с электромагнитными волнами. В частности, это находит выражение в том, что радиоволны могут отражаться от плазмы, как от зеркала.
Попытаемся сначала нарисовать самую общую картину движе-
ния заряженной частицы в плазме. Путь каждого иона или электрона можно сначала очень грубо представить себе состоящим из отрезков, на протяжении которых частица движется свободно, не испытывая
модействия с соседями. Эти участки свободного движения частиц прерываются кратковременными столкновениями, в результате которых направление движения меняется. В промежутках между двумя последовательными столкновениями частица движется под действием того общего электрического или магнитного поля, которое создано в плазме за счёт внешних источников. Это очень упрощённая картина поведения частицы, и она нуждается в серьёзных поправках, учитывающих основные особенности плазмы, которые проявляются прежде всего в характере её собственного электрического поля, существующего независимо от внешних источников. Каждая заряженная частица создаёт вокруг себя электрическое поле с радиально расходящимися от неё силовыми линиями. Поля от отдельных с зарядами разных знаков, складываясь между собой, в среднем компенсируют друг друга. Однако это не означает, что в каждый данный момент времени электрическое поле в какой-либо выбранной нами точке в точности равно нулю. Поле в любой точке плазмы в действительности очень быстро изменяется и по величине, и по направлению, и эти хаотические колебания дают нуль, только если рассчитывать среднюю величину напряжённости поля за достаточно длинный интервал времени.
Напряжённость собственного электрического поля плазмы ис-
пытывает сильные хаотичес- кие колебания как во времени, так и в пространстве, быстро изменяясь на очень малых расстояниях.
Заряженная частица, находя-
щаяся в электрическом поле, движется по законам, напоми-
нающим обычные законы движения тел в поле тяжести.
Обратимся к рисунку, на котором показаны траектории заряженных частиц в электрическом поле, направленном по вертикальной оси. Стрелки изображают скорости движения частиц в некоторый момент времени. Сила, действующая на заряженную частицу, равна qE, где q – заряд и E – напряжённость поля. Для однозарядных частиц q = ± e, где e – элементарный электрический заряд, а для многозарядных ионов q представляет собой небольшое целое, кратное e (e= к). Под действием этой силы однозарядный положительный ион с массой mi приобретает ускорение , которое направленно вдоль вертикальной оси вверх. Ускорение электрона направлено вниз и численно равно , где me – масса электрона. Электрон гораздо легче иона, и поэтому ускорение, которое получает электрон, во много раз больше, чем ускорение иона. Траектория заряженной частицы в однородном электрическом поле всегда составляет собой пораболу. Форма этой пораболы зависит от свойств частицы, начальных условий движения и величины E. Пусть, например, электрическое поле направленно по оси y, а начальная скорость v0 – вдоль оси x (траектория I на рисунке). В этом случае движение частицы по оси x будет равномерным, а по оси y – равноускоренным.
Применение плазмы в науке и технике.
Электрическая дуга – наиболее подходящая среда для таких ре-
акций, которые не могут протекать в обычных условиях по термодинамическим причинам. Можно зажечь плазму в кислороде и использовать высокую реакционную способность получающегося при этом озона. В азотной плазме можно получить такие экзотические соединения, как тетрафторид азота N2F4 или нитрид титана TiN. Водородная плазма проявляет восстанавливающее действие, поэтому её можно применять для вскрытия железных руд. Продолжительность реакций в высокотемпературной плазме крайне мала. Метан, например, при 4 800 – 5 300 K за 1/10000 c на 75 - 80% превращается в ацителен. Главным преимуществом методов плазмохимии является то, что состав исходного сырья может колебаться в широких пределах. Реакции могут протекать и в холодной плазме при температурах ниже 400 K. Интересным примером может послужить азотирование в тлеющем разряде, применяемое для поверхностного упрочнения стали.
Другие рефераты на тему «Физика и энергетика»:
- Защита от изменения частоты
- Физическое моделирование
- Моделирование процессов тепло- и массопереноса при закачке радиоактивных растворов в глубокозалегающие пласты
- Исследование особенностей граничного трения ротационным вискозиметром
- Изучение вращательного движения на приборе Обербека. Упругие и неупругие удары шаров
Поиск рефератов
Последние рефераты раздела
- Автоматизированные поверочные установки для расходомеров и счетчиков жидкостей
- Энергосберегающая технология применения уранина в котельных
- Проливная установка заводской метрологической лаборатории
- Источники радиации
- Исследование особенностей граничного трения ротационным вискозиметром
- Исследование вольт-фарадных характеристик многослойных структур на кремниевой подложке
- Емкость резкого p-n перехода