Вода
Попытаемся осуществить в цилиндре давление, отличное от равновесного, например, меньшее, чем равновесное. Для этого освободим поршень и поднимем его. В первый момент давление в цилиндре, действительно, упадет, но вскоре равновесие восстановится: испарится добавочно некоторое количество воды и давление вновь достигнет равновесного значения. Только тогда, когда вся вода испарится, можно осуществи
ть давление, меньшее, чем равновесное. Отсюда следует, что точкам, лежащим на диаграмме состояния ниже или правее кривой ОА, отвечает область пара. Если пытаться создать давление, превышающее равновесное, то этого можно достичь, лишь опустив поршень до поверхности воды. Иначе говоря, точкам диаграммы, лежащим выше или левее кривой ОА, отвечает область жидкого состояния.
До каких пор простираются влево области жидкого и парообразного состояния? Наметим по одной точке в обеих областях и будем двигаться от них горизонтально влево. Этому движению точек на диаграмме отвечает охлаждение жидкости или пара при постоянном давлении. Известно, что если охлаждать воду при нормальном атмосферном давлении, то при достижении 0°С вода начнет замерзать. Проводя аналогичные опыты при других давлениях, придем к кривой ОС, отделяющей область жидкой воды от области льда. Эта кривая — кривая равновесия твердое состояние — жидкость, или кривая плавления,— показывает те пары значений температуры и давления, при которых лед и жидкая вода находятся в равновесии.
Двигаясь по горизонтали влево в области пара (в нижнею части диаграммы), аналогичным образом придем к кривой 0В. Это—кривая равновесия твердое состояние—пар, или кривая сублимации. Ей отвечают те пары значений температуры к давления, при которых в равновесии находятся лед и водяной пар.
Все три кривые пересекаются в точке О. Координаты этой точки—это единственная пара значений температуры и давления,. при которых в равновесии могут находиться все три фазы: лед, жидкая вода и пар. Она носит название тройной точки.
Кривая плавления исследована до весьма высоких давлений, В этой области обнаружено несколько модификаций льда (на диаграмме не показаны).
Справа кривая кипения оканчивается в критической точке. При температуре, отвечающей этой точке,—критической температуре— величины, характеризующие физические свойства жидкости и пара, становятся одинаковыми, так что различие между жидким и парообразным состоянием исчезает.
Существование критической температуры установил в 1860 г. Д. И. Менделеев, изучая свойства жидкостей. Он показал, что при температурах, лежащих выше критической, вещество не может находиться в жидком состоянии. В 1869 г. Эндрьюс, изучая свойства газов, пришел к аналогичному выводу.
Критические температура и давление для различных веществ различны. Так, для водорода = —239,9 °Ñ, = 1,30 МПа, для хлора =144°С, =7,71 МПа, для воды = 374,2 °С, =22,12 МПа.
Одной из особенностей воды, отличающих ее от других веществ, является понижение температуры плавления льда с ростом давления. Это обстоятельство отражается на диаграмме. Кривая плавления ОС на диаграмме состояния воды идет вверх влево, тогда как почти для всех других веществ она идет вверх вправо.
Превращения, происходящие с водой при атмосферном давлении, отражаются на диаграмме точками или отрезками, расположенными на горизонтали, отвечающей 101,3 кПа (760 мм рт. ст.). Так, плавление льда или кристаллизация воды отвечает точке D, кипение воды—точке Е, нагревание или охлаждение воды — отрезку DE и т. п.
Диаграммы состояния изучены для ряда веществ, имеющих научное или практическое значение. В принципе они подобны рассмотренной диаграмме состояния воды. Однако на диаграммах состояния различных веществ могут быть особенности. Так, известны вещества, тройная точка которых лежит при давлении, превышающем атмосферное. В этом случае нагревание кристаллов при атмосферном давлении приводит не к плавлению этого вещества, а к его сублимации - превращению твердой фазы непосредственно в газообразную.
8.Объяснение аномалий.
Теперь мы сможем объяснить происхождение многочисленных аномалий воды. Рассмотрим аномалии плотности. Первая - резкое увеличение плотности при плавлении льда - связана с тем, что сетка водородных связей льда сильно искажается после плавления: в водной сетке углы между связями отклоняются от оптимальных тетраэдрических, в результате чего уменьшается объем пустого пространства между молекулами воды. Вторая определяется тепловой перестройкой структуры водной сетки. Чем ниже температура, тем ажурнее становится сетка, обусловливая уменьшение плотности при понижении температуры ниже 4 С. При высоких температурах перестройка структуры сетки уже мало влияет на плотность, поскольку сетка здесь сильно отличается от ажурной тетраэдрической конфигурации. Тогда становится видным общее для всех веществ (нормальное) явление увеличения расстояний между частицами при нагревании. Заметим, что приближение плотности воды при ее переохлаждении к плотности льда не означает, что структура воды становится все больше похожей на структуру льда. Хотя углы между водородными связями при этом приближаются к тетраэдрическим, но структура ажурной случайной водной сетки при низких температурах не имеет ничего общего с регулярной структурой льда Ih .
Аналогичным образом можно объяснить аномальное поведение и других свойств воды при низких температурах, например, сжимаемости. Общая причина такого аномального поведения заключается в том, что при низких температурах сетка водородных связей воды еще не очень искажена по сравнению с тетраэдрической конфигурацией, и при изменении температуры имеет первостепенное значение перестройка структуры этой сетки, которая и определяет аномальный вклад в поведение наблюдаемого нами свойства воды. При высоких температурах, когда водная сетка сильно деформирована, ее перестройка оказывает меньшее влияние на наблюдаемое свойство и вода ведет себя, как и все обычные жидкости.
Чтобы деформировать сетку при изменении температуры, перестроить ее структуру, нужно затратить энергию; это и объясняет аномальный вклад в теплоемкость. Изменение структуры сетки можно назвать изменением ее конфигурации, поэтому аномальный вклад в теплоемкость, который описывает затраты энергии на изменение структуры сетки (при увеличении температуры на один градус), называют конфигурационной теплоемкостью. Аномальный вклад в теплоемкость не исчезает вплоть до 100°С (при обычном давлении) и его величина мало изменяется с температурой. Это означает, что сетка водородных связей в воде существует на всем интервале существования жидкости - от точки плавления до точки кипения: с ростом температуры водородные связи не разрываются, а постепенно изменяют свою конфигурацию.