Азот и его соединения
Хотя название “азот" означает “не поддерживающий жизни", на самом деле это - необходимый для жизнедеятельности элемент. В белке животных и человека содержится 16 - 17% азота. В организмах плотоядных животных белок образуется за счет потребляемых белковых веществ, имеющихся в организмах травоядных животных и в растениях. Растения синтезируют белок, усваивая содержащиеся в почве азотист
ые вещества, главным образом неорганические.
Значительные количества азота поступают в почву благодаря азотфиксирующим микроорганизмам, способным переводить свободный азот воздуха в соединения азота.
В природе осуществляется круговорот азота, главную роль в котором играют микроорганизмы - нитрофицирующие, денитрофицирующие, азотфиксирующие и др.
Однако в результате извлечения из почвы растениями огромного количества связанного азота (особенно при интенсивном земледелии) почвы оказываются обедненными. Дефицит азота характерен для земледелия почти всех стран, наблюдается дефицит азота и в животноводстве (“белковое голодание”). На почвах, бедных доступным азотом, растения плохо развиваются. Хозяйственная деятельность человека нарушает круговорот азота. Так, сжигание топлива обогащает атмосферу азотом, а заводы, производящие удобрения, связывают азот из воздуха. Транспортировка удобрений и продуктов сельского хозяйства перераспределяет азот на поверхности земли.
Применение
В промышленности газ азот используют главным образом для получения аммиака. Как химически инертный газ азот применяют для обеспечения инертной среды в различных химических и металлургических процессах, при перекачке горючих жидкостей. Жидкий азот широко используют как хладагент, его применяют и в медицине, особенно в косметологии. Важное значение в поддержании плодородия почв имеют азотные минеральные удобрения. В лаборатории азот легко может быть получен при нагревании концентрированного нитрита аммония: NH4NO2 (N2 + 2H2O. Технический способ получения азота основан на разделении предварительно сжиженного воздуха, который затем подвергается разгонке.
Основная часть добываемого свободного азота используется для промышленного производства аммиака, который затем в значительных количествах перерабатывается на азотную кислоту, удобрения, взрывчатые вещества и т.д. Помимо прямого синтеза аммиака из элементов, промышленное значение для связывания азота воздуха имеет разработанный в 1905 цианамидный метод, основанный на том, что при 10000С карбид кальция (получаемый накаливанием смеси известии угля в электрической печи) реагирует со свободным азотом: CaC2 + N2 (CaCN2 + C. Образующийся цианамид кальция при действии перегретого водяного пара разлагается с выделением аммиака: CaCN2 + 3H2O (CaCO3 + 2NH3.
Cвободный азот применяют во многих отраслях промышленности: как инертную среду при разнообразных химических и металлургических процессах, для заполнения свободного пространства в ртутных термометрах, при перекачке горючих жидкостей и т.д. Жидкий азот находит применение в различных холодильных установках. Его хранят и транспортируют в стальных сосудах Дьюара, газообразный азот в сжатом виде - в баллонах. Широко применяют многие соединения азота. Производство связанного азота стало усиленно развиваться после 1-й мировой войны и сейчас достигло огромных масштабов.
История открытия
Открыт в 1772 шотландским ученым Д. Резерфордом в составе продуктов сжигания угля, серы и фосфора как газ, непригодный для дыхания и горения ("удушливый воздух") и в отличие от CO2не поглощаемый раствором щелочи. Вскоре французский химик А.Л. Лавуазье пришел к выводу, что "удушливый" газ входит в состав атмосферного воздуха, и предложил для него название "azote" (от греч. azoos - безжизненный).
Соединения азота - селитра, азотная кислота, аммиак - были известны задолго до получения азота в свободном состоянии. В 1787 г.А. Лавуазье установил, что
“жизненный” и “удушливый” газы, входящие в состав воздуха, это простые вещества, и предложил название “азот". В 1784 г.Г. Кавендиш показал, что азот входит в состав селитры; отсюда и происходит латинское название азота
(от позднелатинского nitrum - селитра и греческого gennao - рождаю, произвожу), предложенное в 1790 году Ж.А. Шапталем. К началу ХIX в. были выяснены химическая инертность азота в свободном состоянии и исключительная роль его в соединениях с другими элементами в качестве связанного азота.
Вывод: краткое содержание
Основная масса азота на Земле находится в газообразном состоянии и составляет свыше 3/4 атмосферы (78,09% по объ - ему, или 75,6% по массе). Практически на нашей планете за - пас азота неисчерпаем - 3,8*10^15 т. Азот - довольно инертный элемент, поэтому редко встречается в связанном состоянии. Это один из основных биофильных элементов, не - обходимый компонент главных полимеров живых клеток - структурных белков, белков - ферментов, нуклеиновых и аде - нозинтрифосворных кислот. Никакой другой элемент так не лимитирует ресурсы питательных веществ в агроэкосистемах, как азот. Он может стать доступным для живых организмов только в связанной форме, то есть в результате азотофиксации.
Азотофиксация - биологический процесс, и единственными организмами, способными его осуществлять, служат прокариоты (бактерии, цианобактерии, актиномицеты и архебактерии).
Небиологические процессы фиксации азота (грозовые разряды, воздействие УФ-лучей, работа электрического оборудования и двигателей внутреннего сгорания) в количественном отношении весьма несущественны, так как вместе дают не более 0.5% связанного азота. Даже вклад заводов азотных удобрений, производящих синтетический аммиак составляет лишь 5%.
Следовательно, свыше 90% всей фиксации молекулярного азота атмосферы осуществляется вследствие метаболической активности определённых микроорганизмов.
Впервые бактерии рода азотобактер, а точнее Azotobacter chroococcum были открыты голландским микробиологом М. Бейеринк в 1901 году.
Использованная литература
1. Большая энциклопедия Кирилла и Мефодия 2003.
2. Мишустин Е. Н., Емцев В.Т. "Микробиология" Агропромиздат
3. Мишустин Е. Н., Шильникова В.К. "Биологическая фиксация
4. Азота атмосферы" Наука 1968г.