Наша Солнечная система
— исключается влияние гравитационного поля Земли, вызывающего деформации как в конструкции КА, так и оптическом инструменте;
— появляется возможность получить все данные в единой системе координат;
— отпадает необходимость учета параметров вращения Земли, неточное знание которых ухудшает с течением времени точность опорной системы координат;
— наблюдения с КА можно вести практически
непрерывно в течение многих суток, месяцев и даже лет.
Благодаря этому существенно повысится точность создаваемых звездных каталогов. Проведение прецизионных астрометрических измерений с КА позволит создать координатную основу для изучения развития кинематики и динамики Солнечной системы. Совокупность полученных данных о собственных движениях, параллаксах, радиометрических характеристиках разных типов звезд расширит наши знания в области звездной астрономии и астрофизики (уточнение шкалы расстояний во Вселенной, определение светимости и массы звезд, исследование структуры, динамики, возраста и эволюции Галактики). Проведение астрометрических измерений с точностью до тысячных долей угловой секунды (что недостижимо для наземных инструментов!) даст возможность изучить и некоторые релятивистские эффекты (в частности, релятивистское смещение перигелиев Венеры и Марса).
Прикладное значение данных космической астрометрии и радиометрии состоит, в первую очередь, в существенном повышении точности астроориентации и астронавигации космических аппаратов, а также в обеспечении прецизионного определения координат искусственных и естественных небесных объектов. В частности, при полетах к Марсу повышение точности наведения позволит эффективно использовать аэродинамическое торможение КА и увеличить вес полезной нагрузки за счет сокращения запаса горючего.
Идея использования МКЛ для размещения астрометрических инструментов базируется на следующих основных положениях:
— Движение МКЛ относительно центра масс обеспечивает полный обзор звездного неба и оптимальные условия для определения годичных параллаксов и собственных движений звезд. Важно, что постоянная ориентация КА по отношению к Солнцу гарантирует постоянство теплового режима на борту и, следовательно, отсутствие тепловых деформаций измерительных инструментов.
— Конструктивная схема МКЛ предусматривает модификации базовой конструкции. Благодаря выбору орбит и режима работы бортовых систем угловое движение МКЛ приобретает высокую детерминированность. Это, в свою очередь, открывает возможность использовать статистическую обработку больших массивов измерений, объединяющих далеко отстоящие по времени наблюдения одних и тех же звезд.
(рис.3) Общий вид МКЛ в проекте «Регата-Астро» В этом проекте для МКЛ необходимо обеспечить минимальные возмущающие факторы. Для этого выбираются орбиты, удаленные на несколько млн км от Земли, и вводятся некоторые конструктивные изменения. Основные паруса (1) делаются из поглощающих «черных» материалов, а в управляемых парусах (2) — материал с двухсторонним покрытием («черным» и «зеркальным»).
На рисунке показаны: солнечная панель (3), блок телевизионных звездных камер (4), приборная рама (5), демпфирующее устройство (6). Медленное вращение МКЛ (1 об/сут) вокруг продольной оси (в направлении на Солнце) и использование четырех звездных камер (4) (установленных в плоскости, перпендикулярной направлению на Солнце) позволит получить карты звездного неба за полгода орбитального полета
При выполнении астрометрических измерений нужно точно знать положение инструмента в момент измерения или определить его в процессе обработки измерений. Традиционно в астрометрии используется первый подход. Высокая степень детерминированности углового движения МКЛ позволяет использовать второй подход, в котором положения звезд, параметры инструмента и ориентация КА определяются совместно, в едином процессе статистической обработки измерений.
Выбор орбиты МКЛ в проекте «Регата-Астро», в первую очередь, подчинен требованию минимизации возмущений в угловом движении. Учитываются, конечно, и условия организации связи с Землей. Поэтому требуется, чтобы во время своего активного существования (5 лет) КА не сближался с Землей до расстояний, меньших 1 млн км, и удалялся бы от нее более чем на 10 млн км. Выведение на рабочую орбиту с промежуточной должно осуществляться однократным включением разгонного блока, а дальнейший полет должен происходить без орбитальных коррекций. Этим и другим условиям удовлетворяют квазиспутниковые орбиты (КСО) в системе «Солнце-Земля». Они намного ближе к Земле, чем к Солнцу, но располагаются далеко за границами сферы действия Земли (движение по ним определяется в основном притяжением не к Земле, а к Солнцу). КСО в проекте «Регата-Астро» имеет малую полуось 5 млн км и наклонение к плоскости эклиптики 10°. Удаление КА от Земли меняется в пределах 2— 10 млн км.
Основные характеристики астрометрической МКЛ, ее орбита и ориентация позволяют эффективно использовать этот тип КА для решения ряда других задач, в частности, для картографирования небесной сферы в тепловом ИК и миллиметровом диапазонах электромагнитных волн. Картографирование небесной сферы в тепловой ИК-области целесообразно провести в трех спектральных зонах (2—7, 10—12 и 15—20 мкм) с пространственным разрешением 6' с охватом звезд до 15-ой звездной величины. Составление радиояркостных карт небесной сферы может быть осуществлено на основе измерений в областях трех длин волн (1,0—1,5—3,0 мм) с пространственным разрешением не хуже 0,5.'
Картографирование небесной сферы в тепловом ИК и миллиметровом диапазонах позволит обнаружить и исследовать не регистрируемые в видимой ближней ИК-области источники излучения, изучить процессы звездообразования, а также решать другие задачи астрофизики, звездной астрономии, космологии.
Для решения указанных астрофизических задач необходимы две МКЛ — одна с радиометрической и вторая с ИК аппаратурой. Они могут функционировать на одинаковых орбитах и иметь тождественные режимы ориентации, принятые для МКЛ проекта «Регата-Астро». [7]
10.4 Полеты к астероидам и кометам
На последующих этапах реализации проекта «Регата» (после 1997 г.) предполагается не только продолжить плазмофизические и астрометрические космические исследования, но также использовать МКЛ в качестве платформы для осуществления сближения и облета малых тел Солнечной системы и проведения их астрофизического исследования.
Для сопровождения малых тел (астероидов, ядер комет) и, тем более, посадки на них потребуется снабдить МКЛ реактивным двигателем, способным создавать импульс большой тяги. Собственно говоря, сблизить МКЛ с малым телом можно в принципе и с помощью солнечного паруса, но тогда практически исключается возможность оперативной коррекции орбиты. Поэтому осуществлять тесные сближения придется с помощью корректирующих реактивных двигателей.
Траекторию КА можно выбрать так, чтобы обеспечить в одном пуске облет нескольких малых тел. Для КА с парусным движителем их число, как правило, равно двум (старт — облет первого астероида — гравитационный маневр в поле Земли — облет второго астероида). Продолжительность полета по таким траекториям составляет один-два года.