Антиоксидантная система при внутриутробной гипоксии плода
Пролактин (Прл) известен как важный полифункциональный гормон гипофиза, большинство биологических эффектов которого связано с репродуктивной функцией.
Прл, в основном, синтезируется в гипофизе и после ряда событий посттрансляционного процессинга секретируется лактотрофами передней доли гипофиза. По структуре и биологическим свойствам пролактин имеет общие черты с гипофизарным гормоном роста
(соматотропином), плацентарным лактогеном и пролиферином и объединен с ними в отдельное семейство - семейство пролактинподобных белков.
Известно, что опиоидные пептиды и, в особенности, продукт процессинга проопиомеланокортина (ПОМК) - бета-эндорфин входят в число факторов, стимулирующих синтез препролактина - предшественника пролактина. С другой стороны имеются данные, что еще один продукт процессинга ПОМК - альфа-МСГ ингибирует секрецию Прл.
Большинство биологических эффектов пролактина связано с репродуктивной функцией: он вызывает лактацию у млекопитающих, пролиферацию зобной железы у птиц, поддерживает активность желтого тела и продукцию прогестерона, действует на рост и дифференцировку тканей. Кроме этого пролактин влияет на водносолевой обмен, обладает анаболическим действием, вызывает ряд поведенческих реакций у млекопитающих, земноводных и птиц.
В большом количестве при участии надпочечников и печени плода фетоплацентарный комплекс продуцирует кортизол (Кр). Кр - глюкокортикоид, синтезируемый в коре надпочечников. Секреция кортизола подчиняется суточному ритму: у детей в отсутствие стресса концентрация кортизола в сыворотке в 8:00 составляет обычно 11± 2,5мкг%, а в 23:00 - 3,5 ± 0,15 мкг%. Суточный ритм секреции кортизола устанавливается к концу первого года жизни, поэтому у грудных детей он проявляется не столь четко. Этот гормон играет важную роль в развитии альвеолярного эпителия и секреции сурфактанта, которые помогают расправлению легких при первом вздохе ребенка [8, 13].
Плацентарный кортикотропин-рилизинг-фактор вырабатывается трофобластом, хорионом, амнионом и децидуальной тканью и обнаружен в крови плода. Кроме того он синтезируется также гипофизом. Инкубация плацентарной ткани человека с КТРФ приводит к дозозависимой секреции эндорфина и меланоцитстимулирующего гормона. Рецепторы КТРФ были обнаружены в миометрии, где КТРФ оказывает констрикторный эффект, действуя синергично с окситоцином. КТРФ стимулирует также синтез NO эндотелием сосудов плаценты, что приводит к дилатации этих сосудов и улучшению фетоплацентарного кровообращения [8].
Таким образом, вырабатываемый во время беременности плацентарный КТРФ участвует в развитии гиперкортицизма у матери, обеспечении адекватного кровоснабжения плода (возможно, за счет активации NO-синтазы в стенке сосудов фетоплацентарной системы) и затем, непосредственно перед родами, в усилении сократимости матки.
Таким образом, гормонопродуцирующая функция плаценты определяет физиологические процессы в системе мать-плацента-плод. Однако, кроме участия в развитии и поддержании беременности плацентарные гормоны могут быть вовлечены в патогенез нарушений состояния фетоплацентарного комплекса.
1.3. Ферменты плаценты при физиологическом течении беременности и при хронической внутриутробной гипоксии плода
В снабжении плода питательными веществами и продуктами обмена важную роль играют ферменты плаценты, которые локализуются в основном внутриклеточно. Среди них следует выделить группу дыхательных ферментов: оксидазы, каталаза, НАД - и НАДФ-диафоразы, дегидрогеназы (ДГ).
К ферментам плаценты, участвующим в углеводном обмене, относят диастазу, инвертазу, лактазу, карбоксилазу, кокарбоксилазу и др. Активность их в плаценте в 4-8 раз выше, чем в печени матери, и повышается по мере развития беременности и увеличения потребностей плода [16,28].
В плацентарном цито- и синцитиотрофобласте обнаружена аминопептидаза А (АП А, ангиотензиназа). Фермент осуществляет превращение ангиотензина II в ангиотензин III. По мере развития беременности в сыворотке крови матери наблюдается повышение активности АП А. Предполагается участие ангиотензиназы в снижении прессорного ответа сосудов на ангиотензин II при ХВГП [28].
Важную роль в поддержании и развитии беременности играет цистинаминопептидаза (ЦАП), наибольшая активность которой обнаружена в лизосомальной фракции плацентарной ткани. Предполагается ее участие в деградации ангиотензина II, благодаря чему ЦАП может вовлекаться в поддержание кровяного давления у матери на нормальном уровне в течение беременности [11].
В регуляцию иммуных процессов во время беременности вовлечена плацентарная аминопептидаза N (АП N). Она участвует в деградации иммуномодулирующих пептидов. Кроме того, АП N гидролизует энкефалины, соматостатин, нейрокинин А, а также лиз-брадикинин, ангиотензин III [8].
Таким образом, большинство аминопептидаз участвует в обмене вазоактивных пептидов. Вероятно, эти ферменты препятствуют сужению плацентарных сосудов и вовлекаются в перераспределение фето-плацентарного кровотока при ХВГП.
В микроворсинках плацентарного синцитиотрофобласта в большом количестве содержится ангиотензинпревращающий фермент – компонент ренин-ангиотензиновой системы (РАС). Фермент катализирует превращение ангиотензина I в ангиотензин II, участвует в деградации брадикинина. Показано, что в норме содержание фермента в плазме крови беременных постоянно нарастает к III триместру [16].
Также в микроворсинках плаценты человека обнаружена карбоксипептидаза N. Фермент, являясь компонентом калликреин-кининовой системы (ККС), главным образом контролирует циркуляцию крови в фетоплацентарном комплексе, участвует в деградации брадикинина в плаценте и сыворотке крови. Обнаружено, что уровни брадикинина в артериальной и венозной крови сосудов пуповины ниже, чем в крови матери [38].
Многообразные функции в плацентарной ткани выполняют пептидгидролазы. Определенную роль в развитии беременности, особенно в ранние сроки, в период имплантации плодного яйца, играют катепсины, активность которых прогрессивно снижается в процессе развития беременности, особенно при перенашивании.
Таким образом, при осложнениях беременности отмечаются изменения в функционировании ферментных систем плаценты, в том числе тех, которые участвуют в образовании и инактивации пептидов, регулирующих кровоток в ФПК. Последние, в свою очередь, могут быть вовлечены в развитие многочисленных адаптационных реакций. Поэтому представляется важным исследование активности ферментов обмена биологических активных пептидов при патологиях беременности.
1.3.1. Катепсины
Катепсины - (от греч. kathepso-перевариваю), ферменты класса гидролаз, катализирующие гидролиз пептидной связи. Содержатся в тканях животных и человека. Неспецифический протеолиз играет важную роль в регуляции белкового обмена, в ходе которого белки организма постоянно обновляются.
По строению активного центра различают три основных группы катепсинов. В группу катепсинов, содержащих в активном центре остаток серина (так называемые сериновые амидгидролазы), входят катепсин А (сериновая карбоксипептидаза A1)и катепсин G. Обширную группу составляют катепсины, содержащие в активном центре цистеин (тиоловые амидгидролазы). В эту группу входят катепсины В, С, Н, L, N и S. К катепсинам, содержащим в активном центре остаток аспарагиновой кислоты (так называемые карбоксильные амидгидролазы), относятся катепсин D и катепсин Е. Катепсин С обладает также сильно выраженной транспептидазной активностью - катализирует перенос олигопептидов на пептиды или аминокислоты. Известен также катепсин F, который катализирует расщепление протеогликанов. Он ингибируется некоторыми иммуноглобулинами, не чувствителен к действию диизопропилфторфосфата, пепстатина и реагентов, взаимодействующих с группой SH [16, 38].
Другие рефераты на тему «Биология и естествознание»:
Поиск рефератов
Последние рефераты раздела
- Влияние экологических факторов на разнообразие моллюсков разнотипных искусственных и естественных водоемов
- Влияние экологии водоемов на биологическое разнообразие фауны
- Влияние фтора и фторосодержащих соединений на здоровье населения
- Влияние факторов внешней среды на микроорганизмы
- Влияние физической нагрузки на уровень адренокортикотропного гормона, адреналина, кортизола, кортикостерона в сыворотке крови спортсменов
- Временные аспекты морфогенетических процессов. Эволюция путем гетерохронии
- Вопросы биоэтики