Безопасность полетов

Е. Если есть веские основания в ближайшее время ожидать электрический разряд, следует полностью включить кабинное освещение и смотреть только на приборы во избежание ослепления молнией. Пилоту рекомендуется также надевать в этих случаях светофильтры и экранирующий козырек.

Ж. Необходимо подготовить автопилот к немедленному включению в случае ослепления экипажа молнией.

3. В ожидании эле

ктрического разряда не следует прижимать наушники во избежание акустического шока.

Рекомендуемые выше правила относятся к полетам на не защищенном от грозы самолете. Директор Научно-исследовательского института грозозащиты самолетов профессор Ньюмен отмечает, что самолеты, совершающие регулярные рейсы на авиалиниях, практически не могут избежать попадания в грозу, а также не могут обходиться без связи, заземляя антенну на корпус самолета. Поэтому сам самолет должен быть обеспечен средствами грозозащиты. Профессор Ньюмен указывает на то, что металлический корпус самолета сам по себе предохраняет находящихся внутри самолета пассажиров и членов экипажа от грозовых разрядов.

Путем принятия соответствующих мер при производстве самолета опасность попадания грозового разряда внутрь машины через антенну можно ликвидировать. На современных самолетах может быть обеспечена полная защита экипажа от грозовых разрядов, и самолеты должны будут обходить грозовые зоны только для избежания сильной болтанки.

В большинстве случаев повреждения самолета от удара молнии не являются серьезными. Однако они всегда влекут за собой большие затраты. Самолет, подвергшийся удару молнии, должен быть снят с эксплуатации. Все связное и навигационное оборудование должно быть проверено и вновь отрегулировано. Проведение этих работ, а также проверка всей конструкции самолета и ремонт поврежденных деталей ведут к потере дорогостоящего летного времени и увеличению непроизводительных расходов авиакомпании [51].

Струйные течения

В верхних слоях тропосферы существует узкая зона сильных воздушных течений, имеющих большое протяжение, иногда огибающих земной шар. Скорость этих течений, имеющих определенное направление, колеблется от 90 до 450 км/час.

Высота прохождения течений колеблется от 4500 до 15 ООО м; максимальная интенсивность отмечена на высотах от 7500 до 12 000 м.

Летом воздушные течения проходят севернее, чем зимой: летом полоса течений проходит в пределах 50— 55° с. гл., а зимой — 30—50° с. ш. Кроме того, для летнего времени характерна меньшая скорость течений — примерно в пределах 90—180 км/час. Зимой же скорость их достигает 180—350 км/час.

Иногда эти течения опоясывают все северное полушарие, но чаще имеют разрывы в нескольких местах. Они проходят в тех широтах, где наиболее резко изменяется высота тропопаузы, или там, где в тропопаузе имеются разрывы. Течения эти обычно связаны с полярным фронтом. Направление движения течения воздуха на больших высотах вокруг северного полушария изменяется по широте, отклоняясь на юг и на север, и по высоте (в пределах нескольких тысяч метров).

Интенсивность течения увеличивается по мере отклонения на юг. Однако южнее широты 30° течение разрывается. Скорость его резко падает по мере отклонения вверх [30].

Турбулентность воздуха в верхних слоях тропосферы

Турбулентность воздуха на больших высотах при отсутствии облачности является одной из важных проблем метеорологии в последнее время. Это явление пока еще трудно поддается прогнозу. Хотя обычно турбулентность воздуха на больших высотах вызывается определенными условиями, которые можно предсказать заранее, тем не менее сильная турбулентность иногда отмечается и при отсутствии таких условий. Причины такого вида турбулоитноста остаются пока невыясненными. Турбулентность, о которой идет здесь речь, не следует смешивать с турбулентностью воздуха на малых высотах, связанной с явлением конвекции вследствие нагрева земной поверхности.

При полетах через тропопаузу всегда отмечается болтанка. Сила ее зависит от величины температурного перепада между тропосферой и стратосферой.

Если температурный градиент в тропопаузе небольшой, то переход от тропопаузы к стратосфере является постепенным. В этом случае турбулентность воздуха невелика.

Умеренная турбулентность возникает при небольшой толщине переходного слоя и небольшом повышении температуры в стратосфере.

Сильная турбулентность отмечается при малой толщине переходного слоя и большой разнице в температурах между тропосферой и стратосферой.

Основной причиной турбулентности воздуха на больших высотах при отсутствии облачности являются сильные встречные вертикальные течения воздуха. При большой разнице между скоростями соседних воздушных течений вследствие трения воздуха происходит завихрение пограничных слоев, которое вызывает сильную турбулентность.

Таким образом, на больших высотах, где проходят струйные течения, наблюдается турбулентность воздуха при отсутствии облачности. Недавно проводившиеся исследования показали, что наибольшая турбулентность наблюдается на северной стороне этих течений, где образуется гребень, и на южной, где образуется впадина.

«Ножницы ветров» (Wind shear)

Следует по возможности обходить фронт окклюзии на расстоянии 80—150 км севернее вершины теплого сектора циклона. В районе фронта окклюзии находятся три разнородные воздушные массы, в месте раздела которых имеет место умеренная или сильная турбулентность воздуха. Значительные фронтальные ветры могут наблюдаться также внутри массы теплого воздуха, на так называемом «сухом» фронте или фронте «точки росы», который часто разделяет теплые секторы областей низкого давления на юге центральной части США.

Районы окклюзии представляют опасность для полетов не только вследствие наличия в них сильной болтанки, но также и потому, что в местах фронтальных разделов происходят резкие изменения направления ветра1. При переходе самолета из области попутного в область встречного ветра его воздушная скорость резко возрастает и вызывает резкий подъем самолета. При полете в обратном направлении происходит внезапная потеря воздушной скорости, и если скорость станет ниже критической, то самолет тут же «провалится».

«Ножницы ветров» могут представлять также большую опасность во время полета вблизи зоны грозы, особенно на линии2 смены направления ветров, двигающейся в 9—12 км впереди грозового фронта. Ветры впереди линии шквалов обычно умеренные по силе и южные по направлению, в то время как за ней ветры достигают большой силы (90 км/час и более) и имеют северо-западное направление. Если самолет пересекает эту линию смены ветров с левым разворотом, что имеет место при заходе на посадку в большинстве аэропортов, то происходит резкое падение воздушной скорости самолета, которое может оказаться чрезвычайно опасным, если самолет летит на малой высоте и с небольшой скоростью. Если же самолет пересекает линию смены ветров с правым разворотом, то воздушная скорость самолета будет увеличиваться, в результате чего самолет будет «вспухать». В связи с этим некоторые авиационные компании считают, что при пересечении самолетом линии смены ветров правый разворот более безопасен, чем левый (в южном полушарии — наоборот) [49].

Страница:  1  2  3  4  5  6  7  8  9  10  11  12  13  14  15 
 16  17  18 


Другие рефераты на тему «Военное дело и гражданская оборона»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы