Применение колтюбинговой технологии в бурении

Мощность приводного двигателя необходимо определять в зависимости от конкретных значений параметров агрегата и номенклатуры технологических операций, выполняемых им. Как показано выше, параметрический ряд агрегатов подземного ремонта скважин, работающих с колонной гибких труб, должен состоять из трех-четырех типоразмеров. Сделанные расчеты позволили определить мощности, необходимые для выполн

ения операций при различных параметрах агрегатов. Их результаты представлены на специальной гистограмме, из которой следует, что в случае использования стандартной транспортной базы – автомобильного шасси грузоподъемностью 12 – 16 т, серийно выпускаемого промышленностью, с мощностью двигателя 130 – 180 кВт максимальный диаметр колонны труб составляет 33 мм, а длина – 2000 м.

С помощью транспортной базы такого агрегата можно обеспечить выполнение всех необходимых технологических операций.

Для создания мощных агрегатов необходимы технические решения, базирующиеся на применении либо специальных транспортных средств, либо прицепов, оборудованных палубными двигателями.

4. Колонна гибких труб

4.1. Мировой опыт применения колонн гибких труб

Впервые массовое использование гибких труб большой длины было осуществлено при проведении операции по форсированию Ла-Манша при высадке союзных войск во Франции во время второй мировой войны. Для обеспечения снабжения войск горючим было развернуто 23 нитки трубопроводов по дну пролива: 6 трубопроводов были стальными с внутренним диаметром 76,2 мм, а остальные имели композиционную конструкцию – внутри слой из свинца, снаружи стальная оплетка. Укладку стальных трубопроводов проводили с плавучих катушек диаметром порядка 12 м. На них были намотаны секции трубопроводов длиной 1220 м. Каждая секция, в свою очередь, состояла из сваренных встык труб длиной 6,1 м.

Подобная технология была положена в основу изготовления колонн гибких непрерывных труб в начальный период проведения работ на промыслах. Впервые это осуществила компания "Creat Lakes Steel Co." (США) в 1962 г. Трубы ди­а­метром 33,4 мм с толщиной стенки 4,4 мм сваривали в атмосфере инертного газа встык из 15 кусков. Изготовленную трубу наматывали на катушку с диаметром сердечника 2,7 м.

Технологию создания гибких труб все время совершенствовали и отрабатывали, но только к концу 70-х годов их качество стало соответствовать требованиям, необходимым для проведения работ на нефтепромыслах.

Параллельно специалисты Канады создавали гибкие трубы для бурения скважин. К 1976 г. фирмой "Flex Tube Service Ltd." была изготовлена и использована при проведении буровых работ гибкая колонна из стали диаметром 60,3 мм, которая наматывалась на катушку с диаметром сердечника около 4 м и состояла из сваренных встык 12-метровых труб.

Вскоре специалисты этой же фирмы изготовили колонну бурильных труб диаметром 60,3 из алюминия. Работы по созданию труб подобной конструкции были прекращены из-за их низкой прочности, при которой спуск на глубину колонны возможен лишь до 900 м.

Основное внимание изготовителей труб было сосредоточено на отработке технологии, которая могла бы обеспечить как можно большую длину отдельных плетей и таким образом сократить число поперечных стыков, а также на совершенствовании конструкции самого стыка.

К 1983 г. благодаря использованию заготовок ленты из Японии специалистам фирмы "Quality Tubing Inc." (США) удалось увеличить длину плетей до 900 м. Стыки отдельных плетей выполняли еще до поступления ленты в трубогибочную машину, что позволило существенно повысить качество труб. При этом наружный диаметр последних был увеличен до 89 мм.

К 1991 г. глубина спуска КГТ увеличилась до 5200 м, а в 1995 г. был начат выпуск труб с наружным диаметром 114,3 мм .

4.2. Материалы, применяемые для изготовления колонны

В настоящее время большинство гибких труб изготавливают из стали обычной малоуглеродистой, низколегированной и нержавеющей. Небольшое количество труб производят и из других металлов, например, сплавов титана.

К малоуглеродистым относится сталь А-66 типа 4 со следующим химическим составом:

Химический элемент

C

Mn

P

S

Содержание элемента, %

0,1–0,15

0,6 – 0,9

Не более 0,03

Не более 0,005

Химический элемент .

Si

Cr

Cu

Ni

Содержание элемента, %

0,3–0,5

0,55–0,7

0,2–0,4

Не более 0,25

Эта сталь характеризуется следующими прочностными и деформационными показателями:

Предел текучести (минимальный), МПа.

480

Предел прочности при растяжении (минимальный), МПа

550

Удлинение при разрушении , %

30

Твердость, HRc

22

Улучшение прочностных показателей трубы может быть достигнуто за счет использования высокопрочных низколегированных сталей, подвергаемых термообработке, включающей закалку и отпуск. Химический состав сталей отличается повышенным содержанием хрома и молибдена, обеспечивающих способность стали принимать закалку.

Прочность труб из низколегированных сталей выше малоуглеродистых на 40 % (предел текучести 690 – 760 МПа) при сохранении пластических свойств.

К преимуществам труб, изготавливаемых из низколегированных сталей, следует отнести их высокую прочность при статических и циклических нагрузках.

Однако их недостатком является сложность ремонта в промысловых условиях, так как выполнение сварочных работ приводит к местному отпуску и снижению предела текучести до 550 МПа. В качестве примера использования нержавеющей стали для изготовления труб можно привести сталь 08Х18Н10Т (ГОСТ 5632–72).

В начале 90-х годов для производства труб стали использовать титан и его сплавы, что позволило, с одной стороны, улучшить их прочностные характеристики, а с другой, повысить надежность, поскольку титановые, как и алюминиевые трубы, изготавливают методом экструзии, что позволяет исключить продольный шов.

Страница:  1  2  3  4  5  6  7  8  9  10  11  12  13  14  15 
 16  17  18  19  20  21  22 


Другие рефераты на тему «Геология, гидрология и геодезия»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы