Нумерология как точная наука
Интересные подходы к понятию числа можно найти у некоторых эзотериков прошлого и настоящего, не порвавших окончательно связи с учениями древних. Например, еще Плотин говорил, что натуральные числа можно рассматривать как разрешение противоречия между единым (символизирующимся числом 1, с которым связываются понятия Абсолюта, начала, идеи, потенциала, тождества и др.) и многим (его символ - беск
онечность, с которой связано представление о нашем конкретном мире как предельном порождении Абсолюта), а также между единичным и всеобщим, началом и концом, рождением и смертью. В рамках подобного понимания все натуральные числа можно рассматривать как ступени в движении от единого Абсолюта к бесконечному разнообразию нашего Мира. При этом чем больше величина натурального числа, тем более конкретные, "мирские" понятия оно может описывать, тем большая детализация с ним связана. Однако каждый шаг в этом описании дается большим трудом. Не случайно в большинстве книг по нумерологии подробно описаны только первые несколько чисел, обычно от 1 до 10, причем числа 8, 9, 10 нередко просто называют завершающими ряд, а потому совершенными, предельными, а более конкретные их свойства рассматриваются редко. Следующие числа, как правило, изучены вкратце, поверхностно. Лишь в немногих книгах подробно анализируются двузначные числа, например в книге Пьетро Бонго "Тайны чисел", опубликованной в 1585 г. и являющейся как бы энциклопедией представлений древних о числе, а также в упоминавшейся книге А.Подводного. Но эти подходы эзотериков (в разные времена именовавшиеся еще и герметистами, гностиками, оккультистами, каббалистами и др.) еще очень далеки от удовлетворительного результата. Некоторые знания о числе нынче представляются утраченными, многое забыто, но это не значит, что прогрессивное развитие нумерологии невозможно! Наоборот, именно сейчас, когда дифференциация науки достигла апогея, а каждая из наук в достаточной мере явила свою индивидуальность, стоит попытаться восстановить в деталях учение древних мыслителей о числе, дать ему современное толкование. Цель данной статьи - на основе изучения древних и некоторых современных сочинений изложить точку зрения на нумерологию как на строгую, содержательную, корректно обоснованную науку.
При рассмотрении свойств чисел следует прежде всего отметить, что существует несколько принципиально разных способов их употребления, о которых знали еще в древности. Наиболее известно разделение чисел на порядковые и количественные. Первые используются при пересчете предметов по порядку: первый, второй, третий и т.д., ими обозначают отдельные этапы процессов, например первый шаг, вторая молодость; математики называют такие числа ординальными. Количественные числа - один, два и т. д., - используются, когда нужно установить количество однородных элементов в некоторой группе, множестве; математики в этом случае говорят о мощности множества и числа эти называют кардинальными.
Таким образом, единое понятие числа как бы расщепляется надвое. Этот процесс противопоставления, разделения, дифференциации типичен во всех областях знания. Он необходим для более подробного изучения того потенциала, который был первоначально заключен в едином, в нашем случае - в едином понятии о числе. Тем самым мы совершили переход от числа 1, описывающего общее понятие числа, к числу 2=1+1, связанному с разделением чисел на две группы. Количественные числа обычно связываются с понятиями, причем одному числу соответствует бесконечно много понятий (блаженный Августин говорил, что каждое число имеет девять смыслов, но число 9 здесь надо понимать скорее не как конкретную величину, а как символ бесконечности). Так, все понятия можно считать содержащимися в потенции в Абсолюте, характеризуемом числом 1. Порядковые числа удобнее применять при изучении динамических процессов, для которых они связываются с отдельными их этапами. На этом разделении на две группы классификация чисел не заканчивается.
Из общих соображений нумерологии, раздвоение, характеризуемое числом 2, связанным с понятиями полярности, изменения, отрицания и т.д., должно смениться неким синтезом, в котором выявившееся противоречие двух пониманий числа будет, используя терминологию Гегеля, снято. Другими словами, речь идет о переходе от числа 2 к числу 3=2+1. Есть и другой подход к развитию понятия о числе, связанный с продолжением процесса дифференциации, а именно понятие порядкового числа можно подразделить на два новых понятия, условно называемых горизонтальными и вертикальными числами. Горизонтальные порядковые числа связываются с процессами, в которых происходят по преимуществу количественные изменения, не затрагивающие сущности системы в процессе ее движения, изменения (разумеется, это идеализация, реально таких процессов не бывает). Вертикальные числа связываются с процессами, которые можно условно назвать эволюционными (в чистом виде они тоже не существуют, и речь идет лишь о преобладающей тенденции, сложившейся в современной эзотерике). Вертикальные порядковые числа удобно называть уровнями, планами или просто этажами. Систему уровней иногда интересно прочесть в порядке, противоположном заданному. Это дает некоторую новую систему уровней или новое порядковое вертикальное число. Так, от диадической системы внутреннего и внешнего можно перейти к такой, которая начинается с внешнего, а завершается внутренним. В астрологии с этим связаны два направления обхода Зодиака, а в более общем контексте - эволюция и инволюция.
В связи с этим интересно применить грамматический подход к нумерологии. Порядковые числа в силу динамичности часто ассоциируются с глаголами, ибо глагол обозначает процессуальный признак предмета, состояние как процесс или действие; или же эти числа соотносятся с прилагательными, обозначающими качества предметов, причем особенностью прилагательных во многих языках является наличие у них степеней сравнения. Глаголы обычно соответствуют горизонтальным порядковым числам, а прилагательные - вертикальным. Но в грамматике существует особая глагольная форма - причастие, имеющее наряду с признаками глагола качества прилагательного и указывающее на действие, обладающее качеством. Тем самым причастия соответствуют как бы порядковым числам, рассматриваемым с некоторой новой точки зрения. Однако класс чисел, соответствующий причастиям, еще конкретно не выявлен, что указывает на то, что метанумерология находится пока в зачаточном состоянии, которое можно характеризовать как воплощение идеи числа, но не более того. Количественные же числа естественным образом связываются с существительными, грамматически выражающими значение предметности. Таким образом, некоторые нумерологические категории параллельны грамматическим. Из сказанного видно, что само понятие числа можно изучать и анализировать методами самой же нумерологии, продвигаясь к более глубокому его пониманию. Новые знания, полученные при таком анализе, можно потом применять к усовершенствованию самой нумерологии как науки. Такой подход в математике называется рекурсивным, он может служить основой для строгого построения нумерологии как современной науки.
Другие рефераты на тему «Математика»:
Поиск рефератов
Последние рефераты раздела
- Анализ надёжности и резервирование технической системы
- Алгоритм решения Диофантовых уравнений
- Алгебраическое доказательство теоремы Пифагора
- Алгоритм муравья
- Векторная алгебра и аналитическая геометрия
- Зарождение и создание теории действительного числа
- Вероятностные процессы и математическая статистика в автоматизированных системах