Линейные уравнения и их свойства
Тема 1. Система линейных уравнений
В общем случае система линейных уравнений с неизвестными имеет вид
(1)
Через обозначены
неизвестные, подлежащие определению, величины , называемые коэффициентами системы, и величины , называемые свободными членами, считаются известными. Решением системы (1) называют такую совокупность чисел , которая при подстановке в систему (1) на место неизвестных обращает все уравнения системы в тождества. Система уравнений (1) либо не имеет решения, либо имеет единственное решение, либо имеет бесчисленное множество решений. Две системы линейных уравнений называются эквивалентными, если решение одной из них является решением другой и наоборот. Коэффициенты системы образуют матрицу, которую называют основной матрицей системы
.
Если , то матрица является квадратной и ее определитель называется определителем системы. Если определитель квадратной системы уравнений то система имеет единственное решение, определяемое по формулам, называемых формулами Крамера:
Здесь - определитель системы, определитель матрицы, получаемой из матрицы заменой го столбца столбцом ее свободных членов.
Пример 1. Решить систему линейных уравнений
Решение. Найдем определитель системы
=
Далее вычислим определитель , заменив первый столбец матрицы системы на столбец свободных членов
Аналогично находим определители :
Отсюда по формулам Крамера находим решение системы
Общую систему линейных уравнений вида (1) можно решить методом Гаусса - методом последовательного исключения неизвестных. Исключение неизвестных методом Гаусса удобно выполнять, осуществляя преобразования не с самими уравнениями, а с матрицей их коэффициентов, к которой справа добавлен столбец свободных членов
Полученную матрицу называют расширенной матрицей системы.
Элементарными преобразованиями строк матрицы называют:
Умножение всех элементов строки на число, не равное нулю.
Перестановка строк матрицы.
Прибавление к элементам строки соответствующих элементов другой строки, умноженных на общее произвольное число.
Метод Гаусса заключается в том, чтобы с помощью элементарных преобразований строк основную матрицу системы привести к ступенчатому (или треугольному) виду. Если вернуться к уравнениям, то это означает, что неизвестная содержится только в первом уравнении, неизвестная - только в первом и втором уравнении и т. д. Таким образом, неизвестные системы частично исключаются из исходных уравнений системы, а полученная новая система уравнений является эквивалентной исходной системе. Рассмотрим решение методом Гаусса на примерах.
Пример 2. Решить систему уравнений
(2)
Решение. Расширенная матрица системы имеет вид
(3)
Поменяем местами первую и вторую строку в матрице (3), чтобы получить
(в этом случае упрощаются последующие вычисления).
~ (4)
Символ “~” обозначает эквивалентность матриц. Умножим первую строку полученной матрицы (4) на число (-3) и прибавим соответственно к элементам второй строки, далее первую строку матрицы (4) умножим на число (-5) и прибавим к элементам третьей строки этой матрицы. В результате получим матрицу, которой соответствует система уравнений, содержащая неизвестную только в первом уравнении
~ . (5)
Так как в матрице (5) , то, умножая вторую строку этой матрицы на число (-5) и прибавляя ее к третьей строке, получим основную матрицу треугольного вида. Для упрощения разделим элементы последней строки на число (-11):
~ ~ (6)
Расширенной матрице (6) соответствует следующая система уравнений, эквивалентная исходной системе (2)
Отсюда из третьего уравнения получаем . Подставляя найденное значение во второе уравнение, определяем неизвестную :
Другие рефераты на тему «Математика»:
Поиск рефератов
Последние рефераты раздела
- Анализ надёжности и резервирование технической системы
- Алгоритм решения Диофантовых уравнений
- Алгебраическое доказательство теоремы Пифагора
- Алгоритм муравья
- Векторная алгебра и аналитическая геометрия
- Зарождение и создание теории действительного числа
- Вероятностные процессы и математическая статистика в автоматизированных системах