Биоэнергетика сердца
Во время плато ПД увеличивается проницаемость мембраны для Са++, и он входит в клетку через Cа – каналы.
Это медленный Са++ ток. Дальше часть Са используется в миофибриллах для сокращения, равного 40 % всего Са. Вторая часть поступает в СПР, про запас. Когда деполяризация достигает T – системы, срабатывает Na – триггер, и СПР выбрасыва
ет весь запас Са из цистерн. Это 60 % всего Са. В соркоплазме концентрация Са увеличивается в 100 раз, с 10-8 до 10-5 М.
Для расслабления необходимо уменьшить его концентрацию в миофибриллах.
1-й механизм:
Обмен Na – Cа. Cа удаляется из клетки против концентрационного градиента за счет Е
движения Na внутрь клетки, по концентрационному градиенту. Это Na – Cа – насос.
2-й механизм:
Кальциевый насос продольных трубочек СПР быстро поглощает Са++ из миоплазмы. Сам Cа активирует свое поглощение, стимулируя АТФ – азу мембраны СПР. АТФ дает Е для транспорта Са++ против градиента концентрации.
Эти процессы начинаются еще во время систолы и препятствуют сильному напряжению. Время транслокации Са++ вцистерны и определяет восстановление сердечной мышцы. Благодаря ему не происходит титанических сокращений.
Концентрация Са++ вблизи миофибрилл уменьшается, Cа покидает тропонин – тропо – миозиновые комплексы, так как СПР поглощает его в 3 раза более активнее, наступает расслабление.
Таким образом, во время ПД медленный ток Cа в клетку предопределяет и сокращение, и включение механизма расслабления.
Быстрый ток Naв клетку вызывает выход Са++ из СПР – триггер и дает Е дляудаления Cа из клетки.
3-й насос – K- Na, за счет Е АТФ, удаляет Na, и возвращает K. Наступает реполяризация мембраны, и клетка переходит в исходное состояние.
Таким образом, необходимо говорить о едином механизме сопряжения возбуждения с сокращением и расслаблением.
Собственно мышечное сокращение происходит следующим образом. Когда Са++ присоединяется к тропонину – С (TNC), в нем происходят конформационные изменения, в результате чего тропонин - тропомиозин – комплекс сдвигается и обнажает центры актина. Головки H-меромиозина образуют мостики с нитью актина. Используются Е – АТФ, ионы Са++, Mg++.
Свойства фермента – АТФ – азы проявляет сам H-меромиозин.
Мостики образуются и вновь разрушаются. Таким образом, нити актина скользят между миозином к центру соркомера, каждый раз на 1 шаг - 400 А°.
Мышца укорачивается, происходит систолическое сокращение. В результате химическая Е связейАТФ переходит в механическую работу.
Тропонин - тропомиозин – комплекс (с TN–I) блокирует актин. Ионы Са++ проходят через поры мембраны, и из СПР, Cа взаимодействует с TN – C, тропонин – тропомиозин поворачиваются, актин взаимодействует с миозином.
Cа уходит из клетки или в СПР.
Заключение
Таким образом, согласованное во времени протекание всех 3-х реакций – образования, транспорта и использования Е – обеспечивается эффективными механизмами их взаимной регуляции. Главный фактор, влияющий на Е – метаболизм - сам акт сокращения, регулируемый потоком Са++ во время плато ПД. Особенность сердца состоит в том, что значительное увеличение работы и потребления О2 мало изменяют концентрацию макроэргов в клетке (АТФ и КФ). В сердце велик метаболический оборот этих соединений, эффективная обратная связь:
Синтез Е Расход Е
Мы рассмотрели главные пути обмена Е в миокарде. Пока еще не все ясно. Многие вопросы еще требуют изучения.
Другие рефераты на тему «Медицина»:
Поиск рефератов
Последние рефераты раздела
- Особенности лечения и тракционно-экстензионной терапии на аппарате Kinetrac KNX-7000
- Остеохондроз, методики лечения
- Тракционно-экстензионная терапия у больных остеохондрозом пояснично-крестцового отдела позвоночника
- Болезни, возникающие от курения. Профилактика курения
- Болезни органов дыхания
- Болезни желчевыводящих путей и печени
- Анатомия и физиология артерий нижних конечностей. Этиология и патогенез