Физико-топологическая модель интегрального биполярного п-р-п-транзистора

Физико-топологическая модель — модель расчета электрических параметров, исходными параметрами которой являются электрофизические характеристики полупроводниковой структуры и топологические размеры транзистора (см. рис.1). Электрофизические характеристики: концентрация собственных носителей заряда, ширина запрещенной зоны и диэлектрическая проницаемость полупроводника, времена жизни, тепловые

скорости, концентрации и сечения ловушек захвата, подвижности, коэффициенты диффузии и концентрации примесных электронов и дырок. Многие из этих параметров зависят от профиля легирования (распределения концентрации легирующих примесей вглубь) транзисторной структуры.

Топологические размеры: длина эмиттера Lэ; ширина эмиттера Zэ; расстояния от базового контакта до края базы dбб.

Параметры профиля легирования (см. рис. 1,в): концентрация донорной примеси в эпитаксиальном коллекторном слое Nдк, глубины залегания р-п-переходов коллектор-база хк и эмиттер-база хэ, концентрации акцепторной примеси на поверхности базы Nan и донорной примеси на поверхности эмиттера Nдn, толщина эпитаксиальной пленки WЭП.

Распределение концентрации акцепторной примеси при формировании базы путем двухстадийной диффузии находится из выражения

(1)

где t1a и t2a — время "загонки" и "разгонки" акцепторной примеси;

D1a и D2a — коэффициенты диффузии акцепторной примеси при "загонке" и "разгонке".

Рис. 1. Разрез структуры и топология БТ: а - структура БТ; б - эскиз топологии БТ;в - параметры профиля легирования БТ

Распределение концентрации донорной примеси при формировании эмиттера путем одностадийной диффузии рассчитывается по формуле

(2)

где Dд и tд — коэффициент и время диффузии донорной примеси.

Коэффициент диффузии определяется выражением

D = Doexp(∆E/KT), (3)

где Do — постоянная коэффициента диффузии примеси;

∆E — энергия активации примеси;

К — постоянная Больцмана;

Т — абсолютная температура диффузии примеси.

Согласно (1) и (2) для расчета концентрации на любой глубине х транзисторной структуры необходимо знать значения времени диффузии t2a и tд (t1a задается), которые определяются при решении уравнений

Na ( xк, t ) = Nдк, (4)

Nд ( xэ, t ) = N.( xэ, t2а ). (5)

Уравнения (4) и (5) являются условиями образования p-n-перехода. При решении этих уравнений относительно t2a и tд величины Naп, Nдn, Nдк, хэ, хк являются исходными параметрами модели и задаются разработчиком.

Интегральные БТ работают при малых токах коллектора Iк (1 . 1000 мкА).

При таких токах коллектора статический коэффициент передачи тока в схеме с общим эмиттером может быть рассчитан по формуле

(6)

где Iби — составляющая тока базы, обусловленная инжекцией дырок из базы в эмиттер;

Iбп и Iб р-п — составляющие тока базы, обусловленные рекомбинацией на поверхности пассивной базы и в области пространственного заряда (ОПЗ) р-п-перехода база-эмиттер.

Для БТ, включенного по схеме с общим эмиттером (ОЭ), соблюдается следующее соотношение между токами эмиттера Iэ, коллектора Iк и базы Iб:

(7)

Для типичных значений Вст > 20 можно с погрешностью менее пяти процентов записать Iз = Iк.

Ток Iэ обусловлен движением электронов, инжектированных из эмиттера в базу от эмиттерного к коллекторному p-n-переходу. Движение электронов по базе обусловлено двумя механизмами: диффузией и дрейфом. Диффузия электронов происходит из-за возникновения градиента электронов в результате увеличения их концентрации у эмиттерного края базы вследствие инжекции. Дрейф (движение под действием электрического поля) электронов по базе обусловлен наличием в ней ускоряющего поля, образующегося в неравномерно легированной (диффузионной базе) в результате диффузии дырок от эмиттерного к коллекторному краю базы. Возникает это поле в части базы, расположенной под эмиттером. На основании изложенного ток эмиттера может быть рассчитан по формуле

, (8)

где q — заряд электрона;

μп(х) — подвижность электронов в базе;

Е(х) — напряженность поля в базе;

п(х) — концентрация электронов в базе;

Dn(x) — коэффициент диффузии электронов в базе;

dn(x)/dx — градиент электронов в базе.

Концентрация инжектированных электронов описывается выражением

(9)

где про(х) — равновесная концентрация (при Uэб = 0) электронов в точке (см. рис. 1,в), которая определяется соотношением

(10)

где ni, - концентрация собственных носителей зарядов в кремнии.

Согласно (9) и (10) при уменьшении концентрации |Na(xэ")-Nд(xэ")| увеличивается концентрация инжектированных электронов в базу. Из чего следует, что инжекция электронов в данной части эмиттера будет больше, чем в базовой. Кроме того, в базе под эмиттером имеет место ускоряющее попе. Следовательно, наибольший ток эмиттера протекает через дно эмиттерной области и часть базы, расположенной под ней. Поэтому базу под эмиттером называют "активной", а окружающую эмиттер - "пассивной".

Подвижность μп(х) и коэффициент диффузии Dn(x) растут с уменьшением концентрации легирующей примеси в базе (благодаря уменьшению столкновений с ионами легирующей примеси).

Напряженность поля Е(х) равна

(11)

где φТ = k∙T/q — температурный потенциал,

W'б = х'к- хэ" — толщина квазинейтральной базы (см. рис.1,в).

Из выражения (11) следует, что Е(х) увеличивается при уменьшении концентрации Nк и координаты х'к.

Границы областей пространственного заряда (ОПЗ) р-п-переходов, определяющие толщину квазинейтральной базы, рассчитываются следующим образом.

Переход база-эмиттер можно считать плавным и ширина его ОПЗ равна

(12)

где α(xэ)=dn(xэ)/dx — градиент распределения концентрации легирующих примесей в ОПЗ, снижающийся при их уменьшении;

εεо — диэлектрическая проницаемость кремния;

фкз — потенциальный барьер p-n-перехода база-эмиттер.

Потенциальный барьер p-n-перехода база-эмиттер рассчитывается по формуле

(13)

Ширина ОПЗ p-n-перехода коллектор-база

(14)

где — характеристическая длина в распределении акцепторов в базе;

Страница:  1  2  3 


Другие рефераты на тему «Коммуникации, связь и радиоэлектроника»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2025 - www.refsru.com - рефераты, курсовые и дипломные работы