Структурный синтез перестраиваемых arc-схем
Таблица 3
Основные этапы проектирования
Этап |
Используемые формулы |
Результаты этапов синтеза |
1 |
Соотношения табл. 1, алго- ритм (13) |
|
2 |
Соотношения (36), (40), алгоритм (13) |
|
3 |
Соотношения (38), (40), алгоритм (13) |
|
Для замыкания компенсирующих контуров обратных связей может оказаться необходимым применение активных сумматоров, реализованных на N ОУ. Их влияние на характеристический полином (31) находится из соотношения
(39)
Следовательно, возникающие дополнительные изменения частоты и затухания полюса
(40)
достаточно малы и определяются реализуемым dp. Здесь является глубиной отрицательной обратной связи в l-м ОУ.
Полученные соотношения, топологические правила и выводы совместно с ранее рассмотренным алгоритмом позволяют существенно формализовать процедуру поиска малошумящих звеньев с активной компенсацией.
Рассмотрим построение на основе изложенного материала универсального звена второго порядка с расширенным частотным и динамическим диапазонами. Будем считать, что на втором этапе получена схема, приведенная на рис. 5 (ветвь , показанная пунктиром и связывающая инвертирующий вход ОУ1 с неинвертирующим входом ОУ2, отсутствует, а узел q заземлен). Эта схема следует из рис. 4. Указанные в схеме соотношения элементов не влияют на результаты и приняты для упрощения вида промежуточных соотношений. Результаты различных этапов синтеза приведены в табл. 3.
Рис. 5. Универсальное звено с масштабной перестройкой
На первом этапе по информации, приведенной в табл. 3, составлены матрицы и векторы схемы, причем входная цепь первого масштабного усилителя (j=l) заменена резистивной звездой, образующей пассивный сумматор, коэффициент передачи которого при dp < l равен 0,5. Коэффициенты передаточной функции идеализированной схемы определены по алгоритму (13).
На втором этапе найдены коэффициенты поправочного полинома (32) и относительные изменения параметров, учитывающие влияние частотных свойств ОУ на передаточную функцию и характеристики для максимальной частоты полюса (). При этих же условиях вычислены модули комплексных коэффициентов передачи со входа каждого ОУ на выход ФНЧ схемы , определяющие максимальную спектральную плотность шума
(41)
где – спектральная плотность шума ОУ.
Так как в рассматриваемой схеме всплесков коэффициентов передачи во внутренних узлах не наблюдается (), то в данном случае для всех ОУ чувствительность (37) определяет качественные показатели устройства. Анализируя полученные результаты, можно выделить ОУ1, наиболее сильно влияющий на частотный и динамический диапазоны схемы.
На третьем этапе в соответствии с алгоритмом синтеза реализована собственная компенсация влияния ОУ1. Согласно правилам, приведенным в табл. 2, и соотношению (38), для решения этой задачи необходимо определить такой узел схемы q, для которого на выходе ОУ1 реализуется функция ФВЧ или ФНЧ. В общем случае это определяется через алгоритм (13), так как составляющие резольвенты основной матрицы вычислены на предыдущих этапах. Так, при подаче сигнала на неинвертирующий вход ОУ2 является функцией ФНЧ, поэтому замыканием инвертирующего входа ОУ1 и неинвертирующего входа ОУ2 (связь , показанная на рис. 5 пунктиром) обеспечивается снижение модуля соответствующей чувствительности и расширение не только частотного, но и динамического диапазона. Численные значения параметров, подтверждающие результат, приведены в последней части табл. 3.
В полученной схеме идеализированные параметры исходного варианта не изменяются, так как при идеальных ОУ сигнал на инвертирующем входе ОУ1 отсутствует, и компенсирующая связь не действует.
Для реальных ОУ в области достаточно высоких частот участок цепи от неинвертирующего входа ОУ2 до инвертирующего входа ОУ1 за счет напряжения рассогласования на входе ОУ1 вырабатывает такой сигнал обратной связи, который уменьшает изменения параметров устройства. Аналогично введенный контур действует и на собственный шум схемы, возникающий за счет ОУ1. Это объясняется тем, что коэффициенты передачи энергии шума от входа ОУ2 на выход ФНЧ имеют разные значения.
Четырехкратное применение настоящей процедуры позволяет получить принципиальную схему универсального звена (рис. 6) с масштабной перестройкой. При идеальных ОУ основные параметры звена определяются следующими соотношениями:
(42)
где – эквивалентные постоянные времени цифроуправляемых интеграторов; – коэффициент передачи ЦАП; – коэффициент сдвига частоты полюса.
Рис. Упрощенная принципиальная схема универсального звена
с расширенным частотным и динамическим диапазонами
Влияние площади усиления ОУ на частоту и затухание полюса описывается относительными изменениями
(43)
(44)
где .
Логические переменные устанавливают связи между инвертирующими и неинвертирующими входами ОУ и демонстрируют эффективность действия каждого из компенсирующих контуров.
Другие рефераты на тему «Коммуникации, связь и радиоэлектроника»:
Поиск рефератов
Последние рефераты раздела
- Микроконтроллер системы управления
- Разработка алгоритмического и программного обеспечения стандарта IEEE 1500 для тестирования гибкой автоматизированной системы в пакете кристаллов
- Разработка базы данных для информатизации деятельности предприятия малого бизнеса Delphi 7.0
- Разработка детектора высокочастотного излучения
- Разработка микропроцессорного устройства для проверки и диагностики двигателя внутреннего сгорания автомобиля
- Разработка микшерного пульта
- Математические основы теории систем