Алгоритмы сбора и предварительной обработки измерительной информации
(11)
Фазовая характеристика такого фильтра должна быть максимально близка к линейной.
Практическое применение соотношения (11) осложнено необходимостью располагать априорной информацией о спектрах информационной составляющей и локальных возмущений. Однако из этой формулы можно сделать один качественный выво
д. Поскольку спектр шума, как правило, более широкополосный, чем спектр информативной составляющей, частотная характеристика, задаваемая (11), соответствует фильтру нижних частот, то есть и в этом случае производится сглаживание первичной информации.
Аналогично с помощью многократных интегралов или многократных сумм можно записать алгоритмы сглаживания по пространству.
Сглаженные функции изменяются медленнее по сравнению с исходными. Поэтому при их дискретизации можно использовать больший интервал, что и уменьшает объем передаваемых данных. Однако следует иметь в виду, что если введение поправок или линеаризация всегда приводят к положительным результатам, то к сглаживанию нужно относиться с осторожностью. При сильном сглаживании можно потерять быстро изменяющиеся компоненты, важные для описания ИО.
Для уменьшения объема обрабатываемых данных сглаживание может проводиться на центральной ЭВМ. Однако это не приведет к уменьшению загрузки каналов связи. В целях уменьшения объема передаваемых данных для сглаживания должны использоваться микропроцессорные устройства, встроенные в ИК.
Выводы
В процессе выполнения контрольной работы мы ознакомились с:
- типовыми алгоритмами сбора измерительной информации;
- введением поправок;
- сглаживанием исходных данных.
Литература
1. Автоматизация физических исследований и эксперимента: компьютерные измерения и виртуальные приборы на основе Lab VIEW / под ред. П. А. Бутыркина. — М.: ДМК-Пресс, 2005.— 264 с.
2. Анисимов Б. В., Голубкин В. Н. Аналоговые и гибридные вычислительные машины. — М.: Высшая школа, 1990., — 289 с.
3. Атамалян Э. Г. Приборы и методы измерения электрических величин. — М.: Дрофа, 2005. — 415 с.
4. Ацюковский В. А. Основы организации системы цифровых связей в сложных информационно-измерительных комплексах. — М.: Энергоатомиздат, 2001. — 97 с.
5. Барский А. Б. Нейронные сети. Распознавание, управление, принятие решений. — М.: Финансы и статистика, 2004. — 176 с.
6. Батоврин В., Бессонов А., Мошкин В. Lab VIEW: Практикум по электронике и микропроцессорной технике. — М.: ДМК-Пресс, 2005 —182 с.
7. Вентцелъ Е. С, Овчаров Л. А. Теория вероятностей и ее инженерные приложения. — М.: Высшая школа, 2007. — 491 с.
8. Волкова В. Н., Денисов А. А. Теория систем. — М.: Высшая школа, 2006. — 511 с.
9. ГОСТ Р 8.596—2002. ГСИ. Метрологическое обеспечение измерительных систем. Основные положения.
10. ГОСТ 16263—70. ГСИ. Метрология. Термины и определения.
11. ГОСТ 26016—81. Единая система стандартов приборостроения. Интерфейсы, признаки классификации и общие требования.
12. ГОСТ 8.437—81. ГСИ. Системы информационно-измерительные. Метрологическое обеспечение. Основные положения.
13. Грановский В. А. Системная метрология: метрологические системы и метрология систем. — СПб.: ГНЦ РФ ЦНИИ "Электроприбор", 1999. — 360 с.
14. Гутников В. С. Интегральная электроника в измерительных устройствах. — Л., 1988. — 304 с.
15. Демидович В. П., Марон И. А. Основы вычислительной математики. — М.: Наука, 1970. — 654 с.
16. Деч Р. Нелинейные преобразования случайных процессов. — М.: Советское радио, 1965. — 208 с.
17. Джексон Р. Г. Новейшие датчики. — М.: Техносфера, 2007.— 384 с.
18. Измерение электрических и неэлектрических величин / Н. Н. Ев-тихиев, Я. А. Купершмидт, В. Ф. Папуловский, В. Н. Скуго-ров; под общ. ред. Н. Н. Евтихиева. — М.: Энергоатомиздат,1990. — 352 с.
19. Информационно-измерительная техника и технологии / В. И. Калашников, С. В. Нефедов, А. Б. Путилин и др.; под ред. Г. Г. Ра-неева. — М.: Высшая школа, 2002. — 454 с.
20. Калабеков В. В. Цифровые устройства и микропроцессорные системы. — М.: Радио и связь, 1997. — 336 с.
21. Карабутов Н. Н. Адаптивная идентификация систем. Информационный синтез. — М.: Едиториал УРСС, 2006. — 384 с.
22. Киреев В. И., Пантелеев А. В. Численные методы в примерах и задачах. — М.: Высшая школа, 2008. — 480 с.
23. Корнеенко В. П. Методы оптимизации. — М.: Высшая школа, 2007. — 664 с.
24. Максимей И. В. Имитационное моделирование на ЭВМ. — М.: Радио и связь, 1988. — 230 с.
25. Мезон С, Циммерман Г. Электронные цепи, сигналы и системы. — М.: Иностранная литература, 1963. — 594 с.
26. Метрологическое обеспечение измерительных информационных систем (теория, методология, организация) / Е. Т. Удовиченко, А. А. Брагин, А. Л. Семенюк и др. — М.: Издательство стандартов, 1991. — 192 с.
27. МИ 2438—97. ГСИ. Системы измерительные. Метрологическое обеспечение. Общие положения.
28. Мячев А. А., Степанов В. Н. Персональные ЭВМ и микроЭВМ. Основы организации. — М.: Радио и связь, 1991. — 320 с.
29. Новоселов О. Н., Фомин А. Ф. Основы теории и расчета информационно-измерительных систем. — М.: Машиностроение,
1991. — 336 с.
30. Островский Ю. И. Голография и ее применение. — М.: Наука, 1976. — 256 с. дискретизация погрешность генератор линеаризация
31. Пантелеев А. В., Летова Т. А. Ме— М.: Высшая школа, 2008. — 544 с.тоды и задачах.
32. Потапов А. С. Распознавание образов и машинное восприятие. — СПб.: Политехника, 2007. — 546 с.
33. Путилин А. Б. Вычислительная техника и программирование в измерительных системах. — М.: Дрофа, 2006. — 416 с.
34. РМГ 29—99. Метрология. Основные термины и определения.
35. Рубичев Н. А., Фрумкин В. Д. Достоверность допускового контроля качества. — М.: Издательство стандартов, 1990. — 172 с.
36. Руководство по выражению неопределенности измерения / под ред. В. А. Слаева. — СПб.: ГП "ВНИИМ им Д. И. Менделеева", 1999. — 126 с.
37. Самарский А. А., Михайлов А. П. Математическое моделирование. — М.: Наука; Физматлит, 1997. — 428 с.
38. Советов Б. Я., Цехановский В. В. Информационные технологии. — М.: Высшая школа, 2008. — 263 с.
39. Уайлд Д. Дж. Методы поиска экстремума. — М.: Наука, 1967. — 268 с.
40. Ушаков И. А. Курс теории надежности систем. — М.: Дрофа, 2008. — 240 с.
41. Фомин Я. А. Теория выбросов случайных процессов. — М.: Связь, 1980. — 216 с.
42. Фрайден Дж. Современные датчики: справочник. — М.: Техносфера, 2005. — 592 с.
43. Фрумкин В. Д., Рубичев Н. А. Теория вероятностей и статистика в метрологии и измерительной технике. — М.: Машиностроение, 1987— 168 с.
44. Хартман К. и др. Планирование эксперимента в исследовании технологических процессов. — М.: Мир, 1977. — 562 с.
45. Цапенко М. П. Измерительные информационные системы. — М.: Энергоатомиздат, 1985. — 357 с.
46. Чистяков В. П. Курс теории вероятностей .— М.: Дрофа, 2007. — 256 с.
Размещено на Allbe
Другие рефераты на тему «Коммуникации, связь и радиоэлектроника»:
- Передающее устройство для оптической сети
- Разработка системы управления многосвязных систем автоматического регулирования исполнительного уровня
- Проект городской телефонной станции на основе пакетной транспортной сети
- Организация статистического приёмочного контроля по альтернативному признаку
- Анализ систем домашнего кинотеатра
Поиск рефератов
Последние рефераты раздела
- Микроконтроллер системы управления
- Разработка алгоритмического и программного обеспечения стандарта IEEE 1500 для тестирования гибкой автоматизированной системы в пакете кристаллов
- Разработка базы данных для информатизации деятельности предприятия малого бизнеса Delphi 7.0
- Разработка детектора высокочастотного излучения
- Разработка микропроцессорного устройства для проверки и диагностики двигателя внутреннего сгорания автомобиля
- Разработка микшерного пульта
- Математические основы теории систем