Генераторы стабильного тока и напряжения
Генераторы стабильного тока
Для смещения и стабилизации режимов ИС широко используют генераторы стабильного тока (ГСТ): для стабилизации режимов и в качестве активной нагрузки усилительных каскадов; в качестве ИП эмиттеров Т дифференциальных усилителей; в интеграторах, генераторах пилообразного напряжения и т.д. Под ГСТ понимают двухполюсник, ток через который практически не зависи
т от приложенного напряжения. Если на такой двухполюсник подать сумму постоянного и переменного
напряжений, то его сопротивление
для переменной составляющей будет высоким. Сопротивление
для постоянной составляющей обычно требуется небольшое. Важнейшими параметрами ГСТ являются выходное сопротивление
(в идеале
), выходной постоянный ток
и рабочий диапазон – диапазон выходного напряжения, в котором ГСТ сохраняет свои свойства.
Простейший ГСТ (рис. 1, а) обеспечивает ток , где
,
– напряжение база – эмиттер и коэффициент передачи тока Т. Для определения параметра
напомним, что выходное сопротивление каскада с ОЭ (без учета нагрузки) составляет
, (1)
а б в г
д е ж Рис. 1. Схемы генераторов стабильного тока |
где – эквивалентное (с учетом делителя смещения) сопротивление генератора;
– суммарное (с учетом дифференциального сопротивления
) сопротивление в цепи эмиттера.
Применительно к рассматриваемому ГСТ выражение (1) трансформируется в . При малых токах величина
составляет десятки и сотни килоом. Рабочий диапазон соответствует изменению напряжения
на коллекторе в пределах от
до
. Основными недостатками этого ГСТ являются: относительно невысокое выходное сопротивление; низкая температурная и режимная (при изменении напряжения
ИП) стабильность выходного тока.
Для повышения стабильности с помощью дополнительных сопротивлений и
вводится эмиттерная стабилизация ГСТ (см. рис.1, а), при которой ток
. Она, как следует из соотношения (1), увеличивает сопротивление
ГСТ, но уменьшает его рабочий диапазон на падение напряжения
. Дальнейшее повышение температурной стабильности достигают включением Д последовательно с сопротивлением
. Если характеристики Д согласованы с аналогичными Т, то это нейтрализует изменение тока
под влиянием температурного приращения
. Согласование характеристик обеспечивают диодным включением Т. Требуемое напряжение на базу Т ГСТ можно подавать также с помощью стабилитрона (вместо сопротивления
) или нескольких диодов. Иногда ГСТ, в которых ток вытекает из нагрузки, называют “поглотителями” тока, а со втекающим током – источниками(см. рис.1, а, б).
Реализация ГСТ на ПТ может быть проще: без отдельного источника смещения, т.е. по схеме двухполюсного включения. Такие ГСТ выполняют на ПТ с управляющим переходом и ПТ с изолированным затвором и встроенным каналом (рис. 1, в, г). Их выходное сопротивление равно , где
,
– внутреннее сопротивление и крутизна ПТ.
Существенный недостаток рассматриваемых ГСТ – относительно небольшое выходное сопротивление. Для его увеличения применяют двухтранзисторные ГСТ (рис. 1, д – ж). В генераторе на БПТ сопротивление и составляет сотни (тысячи) килоом, в ГСТ на ПТ оно определяется соотношением
(
(
),
(
) – внутреннее сопротивление и крутизна транзистора VT1 (VT2)) и достигает единиц (десятков) мегаом. Для повышения тока
затвор ПТ VT1 можно подключить не к корпусу, а к истоку ПТ VT2, что уменьшает напряжение смещения ПТ VT1 и увеличивает его ток. Но выходное сопротивление ГСТ оказывается при этом меньше.
Напряжение на базе (затворе) Т приведенных ГСТ фиксировано. Если предусмотреть возможность его изменения, то получим программируемый ГСТ. В случае изменения этого напряжения по закону сигнала ток отслеживает его, что соответствует управляемому генератору тока.
От ГСТ со смещением на основе согласованной пары Т легко перейти к так называемому токовому зеркалу (ТЗ), широко применяемому в схемотех-нике аналоговых ИС. ТЗ (отражателем тока) называют функциональный узел, у которого токи двух сходящихся в одну точку ветвей равны, причем входной управляет выходным
(рис. 2, а). В рассматриваемом случае общей точкой является заземление. В выходную ветвь включена нагрузка и подается питающее напряжение. Входное сопротивление ТЗ мало, выходное – велико (в пределе
). Поэтому ток
не зависит от напряжения в точке 2, а определяется током
. Коэффициент передачи
является основным параметром ТЗ. В общем случае ТЗ можно рассматривать как частный случай управляемого генератора тока. У него коэффициент
не обязательно равен 1.
а б Рис. 2. Функциональная схема (а) и применение (б) токового зеркала |
Другие рефераты на тему «Коммуникации, связь и радиоэлектроника»:
- Автоматизация комплекса центрального кондиционирования воздуха дорожного центра управления перевозками
- Проектирование автоматизированной системы управления
- Проектирование вычислительного устройства
- Исследование электровакуумного триода в рамках виртуального эксперимента
- Развлекательные ресурсы сети интернет
Поиск рефератов
Последние рефераты раздела
- Микроконтроллер системы управления
- Разработка алгоритмического и программного обеспечения стандарта IEEE 1500 для тестирования гибкой автоматизированной системы в пакете кристаллов
- Разработка базы данных для информатизации деятельности предприятия малого бизнеса Delphi 7.0
- Разработка детектора высокочастотного излучения
- Разработка микропроцессорного устройства для проверки и диагностики двигателя внутреннего сгорания автомобиля
- Разработка микшерного пульта
- Математические основы теории систем