Защита информации от утечки по цепям питания

Незначительное подавление высокочастотных составляющих происходит за счет образования «естественного» фильтра, образованного индуктивностью кабеля питания и емкостью монтажа, то есть схема такого «фильтра» выглядит так.

Здесь L0, Lф, Lз — соответственно индуктивности проводов «нуля», «фазы» и «земли», а С

ф-з, С0-з, Сф-0 — емкости монтажа (блока розеток).

Существует целый класс сетевых фильтров, у которых заземляющий провод не имеет никаких контактов с внутренней схемой, кроме самих евророзеток. Этим достигается очень важное преимущество — при работе от сети с заземлением все розетки фильтра заземлены. Но и в случае отсутствия «земли» в розетке (типичный случай советской сети питания) все розетки фильтра объединены между собой по заземляющему контакту (сам фильтр при этом не заземлен). Чтобы разобраться, почему это очень важно представлять, представим схему подключения различной периферии к компьютеру — типичный случай для подключения принтера, сканера, внешнего звукового усилителя или телевизора для просмотра видео на большом экране. Итак, схема выглядит следующим образом.

Это «идеальная» схема подключения периферии — здесь все подключено к заземленной сети питания, потенциалы (напряжения) корпусов устройств одинаковые — они равны 0, поскольку подключены к «земле». Даже в случае возникновения пробоя или повреждения изоляции любого из устройств (даже при обычной работе потенциалы внешних устройств могут и, как правило, существенно отличаются от нуля) «лишнее» напряжение уйдет на землю, и все будет в порядке. А теперь представим схему соединений в случае использования сети без заземления. Она будет намного проще.

Как видно, эта схема похожа, за исключением провода заземления. В этом случае при разности потенциалов компьютера и внешнего устройства, единственной связью потенциалов корпусов устройств является слаботочный интерфейсный кабель (а точнее его экранирующая оплетка). Это опасная ситуация, поскольку сквозные токи, текущие от большего потенциала к меньшему, могут «легко» выжечь входные и выходные порты соединенных устройств. Таких случаев на самом деле имеется великое множество: самый распространенный — это выгорание входа или выхода звуковой карты, например в случае подключения ее к внешнему источнику или усилителю звука. Далее предложена схема подключения этих устройств к «европейскому» фильтру-удлинителю, не подключенному к внешней «земле».

Даже при отсутствии связи с реальной «землей» электрические потенциалы всех устройств выровнены, поскольку их корпуса надежно соединены между собой. В этом случае сквозные токи выберут себе более легкий путь через заземляющие контакты евророзеток, и ничего страшного не произойдет.

2.1.1.2 Варистор

Варистор — полупроводниковый резистор. Варистор — элемент нелинейный, его сопротивление зависит от приложенного к его выводам напряжения: чем выше напряжение, тем ниже сопротивление. Варистор включается параллельно защищаемому оборудованию, то есть к нему приложено то же напряжение, что и к защищаемому устройству. При нормальном напряжении в сети питания и отсутствии импульсных помех ток, проходящий через варистор, очень мал, и им можно пренебречь, и в такой ситуации варистор можно считать изолятором. Если в сети питания возникает импульс высокого напряжения (напряжение импульса может быть выше 6000 В в течение короткого промежутка времени (длительность импульса 10−6 — 10−9 с), то сопротивление варистора резко падает, и он преобразует электрическую энергию импульса в тепловую, чем защищает включенные в сетевой фильтр приборы, в этот момент через варистор может протекать ток силой в несколько тысяч ампер.

2.1.1.2.1 Изготовление

Изготавливают варисторы спеканием при температуре около 1700 °C полупроводника — преимущественно порошкообразного карбида кремния SiC или оксида цинка ZnO, и связующего вещества (глина, жидкое стекло, лаки, смолы и др.). Далее поверхность полученного элемента металлизируют и припаивают к ней выводы.

Конструктивно варисторы выполняются обычно в виде дисков, таблеток, стержней; существуют бусинковые и плёночные варисторы. Широкое распространение получили стержневые подстроечные варисторы с подвижным контактом.

2.1.1.2.2 Свойства

Нелинейность характеристик варисторов обусловлена локальным нагревом соприкасающихся граней многочисленных кристаллов карбида кремния (или иного полупроводника). При локальном повышении температуры на границах кристаллов сопротивление последних существенно снижается, что приводит к уменьшению общего сопротивления варисторов.

Один из основных параметров варистора — коэффициент нелинейности л — определяется отношением его статического сопротивления R к динамическому сопротивлению Rd:

,

где U и I — напряжение и ток варистора.

Коэффициент нелинейности лежит в пределах 2-10 у варисторов на основе SiC и 20-100 у варисторов на основе ZnO.

Температурный коэффициент сопротивления варистора — отрицательная величина.

2.1.1.2.3 Применение

Низковольтные варисторы изготавливают на рабочее напряжение от 3 до 200 В и ток от 0,1 мА до 1 А; высоковольтные варисторы — на рабочее напряжение до 20 кВ.

Варисторы применяются для стабилизации и регулирования низкочастотных токов и напряжений, в аналоговых вычислителях — для возведения в степень, извлечения корней и других математических действий, в цепях защиты от перенапряжений (например, высоковольтные линии электропередачи, линии связи, электрические приборы) и др.

Высоковольтные варисторы применяются для изготовления ограничителей перенапряжения.

Как электронные компоненты, варисторы дёшевы и надёжны, способны выдерживать значительные электрические перегрузки, могут работать на высокой частоте (до 500 кГц). Среди недостатков — значительный низкочастотный шум и старение — изменение параметров со временем и при колебаниях температуры. В последние 5 лет появились на рынке так называемые «нестарящиеся» варисторы, имеющие по ряду параметров улучшение электрических свойств во времени под напряжением промышленной частоты.

2.1.1.2.4 Параметры

· Вольт-амперная характеристика

· Классификационное напряжение, В — напряжение при определённом токе (обычно изготовители указывают при 1 мА), практической ценности не представляет.

· Рабочее напряжение (Operating voltage) В (для пост. тока Vdc и Vrms — для переменного) — диапазон — от нескольких В до нескольких десятков кВ; данное напряжение должно быть превышено только при перенапряжениях.

Страница:  1  2  3  4  5 


Другие рефераты на тему «Коммуникации, связь и радиоэлектроника»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2025 - www.refsru.com - рефераты, курсовые и дипломные работы