Численные методы вычисления интегралов

Вывод формулы Симпсона будем производить аналитически. Как и в предыдущем случае применяем интерполяционный многочлен Лагранжа, для интерполирования функции , на отрезке , при чём считаем, что нам известны значения . Тогда, очевидно, что многочлен Лагранжа имеет вид квадратичной функции:

(15)

Интегрируя (15) на отрезке будем иметь формулу:

(16)

используя свойство аддитивности интеграла, получаем:

(17)

где является четным числом (- число делений отрезка ,т.е. число равных отрезков разбиения).

Формула (17)-называется формулой Симпсона.

Приняв обозначения , получаем привычный вид квадратурных формул:

а) Формула трапеций:

(18)

б) Формула парабол (Симпсона) (при )

(19)

2.3 Метод Ромберга

Пусть промежуток интегрирования разбит на равных частей и для этого разбиения по формуле трапеции получено значение . Значение - совпадает со значением вычисляемого интеграла, если интегрируемая функция линейна, т.е. является многочленом первой степени. По формуле:

(20)

называемой формулой Ромберга, построим - схему:

(21)

Оказывается, что для интегрируемых по Риману функций, все столбцы и строки - схемы сходятся к исходному значению интеграла.

Пример: Выписать явные формулы для фрагмента - схемы:

Решение:

Пусть Тогда

3. Квадратурные формулы Гаусса

Во всех приведенных до сих пор формулах численного интегрирования Ньютона-Котеса и во всех формулах, получаемых методом Ромберга, используются равноотстоящие узлы. В случае квадратурных формул Гаусса это уже не так. Иначе говоря, смысл квадратурных формул Гаусса состоит в том, чтобы при наименьшем возможном числе узлов точно интегрировать многочлены наивысшей возможной степени. Можно показать, что при гауссовых узлах по полученной формуле можно точно интегрировать многочлены степени .

(22)

Для количества узлов и соответствующих значений и - составлены таблицы, которые позволяют вычислять интегралы по формуле (22).

Для понимания сути этих таблиц рассмотрим пример.

Пример:

Пусть нам нужно составить квадратурную формулу с двумя узлами ,по которой точно интегрируются многочлены до степень включительно.

Решение: Искомая формула имеет вид:

,(23)

где - остаток, который обращается в нуль, для

, при .

Тогда, подставляя в (23) имеем:

(24)

Отсюда, приравнивая коэффициенты при , справа и слева, получаем систему уравнений:

(25)

Ее решение имеет вид:

(26)

Следовательно, искомая квадратурная формула такова:

.(27)

Ясно, что если нам нужно вычислить интеграл со многими узловыми точками, действуем следующим образом:

а) промежуток интегрирования делим на - равных промежутков и на каждом маленьком промежутке применяем формулу Гаусса с неравноотстоящими узлами (27);

б) полученные результаты складываем.

В случае, когда , оказывается, что узловыми точками при делении отрезка на - частей являются корни соответствующих многочленов Лежандра.

Для вычисления кратных интегралов, их сводят обычно к повторным интегралам, а далее применяют те же самые кубатурные формулы для каждого значения узловых точек, что и в одномерном случае. Однако, надо иметь в виду, что кратные интегралы значительно сложнее вычислять с заданной точностью.

Страница:  1  2  3  4 


Другие рефераты на тему «Математика»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы