Теория вероятности

№ 1. Бросают две игральные кости. Найти вероятность того, что выпадет одинаковое число очков на обеих костях, и вероятность того, что на обеих костях выпадет четное число очков.

Решение

Событие А – выпало одинаковое число очков на обеих костях

Р (А) =

n = 62 = 36

Исходы у А:

{ (1,1), (2,2), (3,3), (4,4),

(5,5), (6,6) } = 6 = m

Р (А) = = 0,17

Событие В – выпадет на обоих костях четное число очков

m = { (2,2), (2,4), (2,6), (4,2), (4,4),(4,6), (6,2), (6,4), (6,6) } = 9

Р (В) = 0,25

Ответ:

Р (А) 0,17 , Р (В) = 0,25.

№ 2. В урне 4 белых и 6 черных шаров. Из урны наугад извлекают 4 шара. Какова вероятность того, что среди них будет хотя бы два черных шара?

Решение: Событие С – извлекли из урны хотя бы два черных шара, т.е. или два, или три, или четыре

Р (С) =

N = = = = 210

Пусть событие С1 – из четырех шаров два черных шара

М1 = = = = 90

Пусть событие С2 – извлекли из четырех шаров три черных шара

М2 = = =

Пусть событие С3 – извлекли все 4 черных шара

М3 = = 1

Так как события С1, С2, С3 – несовместные, то по теореме сложения вероятностей :

Р(С) = Р(С1) + Р(С2) + Р(С3)

Р(С) =

Ответ:

Р (С) = 0,88

№ 3. Известно, что 5% всех мужчин и 0,25% всех женщин – дальтоники. На обследование прибыло одинаковое число мужчин и женщин. Наудачу выбранное лицо оказалось дальтоником. Какова вероятность того, что это мужчина?

Решение:

Вероятность мужчин 5:

100 = 0,05

Вероятность женщин 0,25:

100 = 0,0025

Р(А) = Р(А1) ∙ Р(Ā2)

Событие А – вероятное лицо мужчина

Событие А1 – дальтоник мужчина

Событие А2 – дальтоник женщина

Р(Ā2) = 1 – 0,0025 = 09975

Р(А) = 0,05 ∙ 0,09975 = 0,0049875

Ответ:

Р(А) = 0,0049875.

№ 4. В некотором семействе 8 детей. Вероятность рождения мальчика или девочки равна 0,5. Найти вероятность того, что

а) имеется 4 мальчика и 4 девочки;

б) число мальчиков заключено между 2 и 6 (включительно).

Решение:

Применим формулу Бернулли:

Рn(k) = ,

Где Рn(k) – вероятность того, что среди n-детей ровно k- мальчиков.

а) Р8(4) = 0,00390625∙

= 0,2734375≈ 0,27.

б) Число мальчиков заключено между 2 и 6, то есть 2 или 3, или 4, или 5,или 6.

Р8(2) = ≈ 0,11

Р8(3) = = 0,21875

Р8(4) = 0,27

Р8(5) = = 0,21875

Р8(6) = = 0,11

Р[2;6](А) = 0,11+0,21875+0,27+0,21875+0,11 = 0,9275

Ответ:

а) Р8(4) =0,27,

б) Р[2;6](А) = 0,9275.

№ 5. Задан закон распределения дискретной случайной величины Х. найти математическое ожидание, дисперсию, среднее квадратичное отклонение. Построить график функции распределения вероятностей случайной величины Х.

Х

10,6

20,6

21

21,6

22,4

р

0,3

0,3

0,2

0,1

0,1

Решение:

m(x) = ∑ xipi = 10,6 ∙ 0,3+20,6 ∙ 0,3+21 ∙ 0,2+21,6 ∙ 0,1+22,4 ∙ 0,1 =

= 9,36+4,2+4,4 = 17,96

Дисперсия

D(x) = m²( x) - (m( x))²

m²( x) = ∑ xi ²pi = 10,6² ∙ 0,3+20,6 ²∙ 0,3+21² ∙ 0,2+21,6 ²∙ 0,1+22,4² ∙ 0,1=

= 33,708+127,308+88,2+46,656+50,176 = 346,048

D(x) =346,048 – (17,96)² = 346,048 – 322,5616 = 23,4864

Среднее квадратичное отклонение

𝜎(x) = = ≈ 4,846

Функция распределения следующих величин Х

F(x) =

№ 6. Непрерывная случайная величина Х задана функцией распределения. Требуется: а) найти плотность распределения; б) найти математическое ожидание, дисперсию, среднее квадратичное отклонение; в) построить графики функций распределения и плотности распределения вероятностей.

Решение:

а) найдем плотность распределения

б) m(x)= =2 =

= 2= 2=

= 2= =

Страница:  1  2 


Другие рефераты на тему «Математика»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы